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Abstract

Construction projects often experience cost overruns and delay due to the cumulative effect of many
risks happening in different activities. Regression-based forecasting, Monte Carlo simulation, and
qualitative risk assessment are all well-established techniques, but their integration into a useful and
transferable early-stage risk forecasting framework is still lacking. In order to convert expert risk
assessments at the activity level into empirically calibrated project-level cost and duration multipliers,
this study suggests a task-based risk scoring model. The study combines Monte Carlo simulation of
project schedules and costs with expert-based qualitative risk identification organized using a
standardized work breakdown structure. Power regression was used to create predictive
relationships between baseline estimates and risk-adjusted outcomes using data from four multi-
story building projects. Leave-One-Project-Out Cross-Validation (LOPOCV) was used to evaluate
the robustness of the model, and Mean Absolute Percentage Error (MAPE) was determined to
evaluate the accuracy, confirming low prediction error and strong explanatory capability.
Dimensionless cost and duration scores are produced by the framework and can be immediately
applied to baseline estimates. The findings show that while high-risk scenarios may increase 25%
of project duration and 20% project cost, respectively, even low-risk scenarios may increase project
duration and cost by roughly 6% and 7%.

Keywords: Risk analysis, Risk score, Regression, and Monte Carlo Simulation.

Introduction

Construction projects are complex processes that require careful management to ensure
completion within the planned schedule, while minimizing costs and maintaining acceptable quality
standard. Risks frequently lead to cost overruns, schedule delays, and reductions in quality. These
issues typically arise due to the complexity of planning, designing, and constructing [1]. Projects that
successfully manage risks proactively identify, assess, and mitigate potential consequences [2]. Risk
management must be carefully considered when managing construction projects. It is essential to
identify the critical risk factors at the preconstruction stage in order to reduce the impact of risks during
the execution phase [3]. Risk identification varies across projects. However, when a Risk Breakdown
Structure (RBS) is integrated with a Work Breakdown Structure (WBS), the resulting assessment
becomes more realistic, structured, and reliable. Another essential part of risk management is
quantifying risk factors based on their impact and likelihood. In construction projects, each task may
face different risks. By assigning risk factors to individual tasks, an overall project risk score can be
computed. This risk score can provide information about the overall project costs and durations based
on the risk factors associated with each task. Risks can affect expenditures, time, quality, and safety in
a number of ways. For risk factors that impact quality and safety, a robust risk management strategy
can be developed and implemented. Similarly, in order to determine the overall project duration and
expenses while accounting for these risks, risk factors that affect time and cost should be identified and
planned for prior to construction.
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Different tools and techniques can be used for risk analysis, which include historical data, expert
opinions, theoretical analysis, and other approaches for risk identification. Analyzing risks can be
conducted using both qualitative and quantitative methods [4].

Conventional construction risk management frameworks use expert judgment to identify and rank
risks qualitatively. Although these methods are helpful in increasing awareness and promoting
communication, they frequently lack a clear link to the overall project cost and schedule forecasting.
However, quantitative risk analysis techniques like Monte Carlo simulation rely on specific probabilistic
inputs that are usually unavailable in the early phases of planning [5].

In order to maintain their applicability, interpretability, and transferability across different projects,
recent research has highlighted the need for hybrid methodologies that integrate qualitative and
guantitative techniques. However, many of the existing hybrid models either produce probabilistic
results that are impractical for use in making quick decisions or are unduly focused on particular use
cases [6, 7].

The objective of this study is to quantify the impact of task-level risks on overall project cost and
duration by integrating expert risk assessments with risk propagation across multiple construction case
studies. The study aims to identify low, base, and high risk conditions and to formulate regression-
based relationships that enable early prediction of risk-induced time and cost overruns to support
practical decision-making in construction projects.

Literature Review

Risk Management consists of the chain of steps starting with risk identification, analysis,
evaluation, and risk treatment [3, 8, 9]. Barghi [6] explained the steps of risk assessment, which start
with planning, identifying, qualitative and quantitative analysis, response planning, and controlling

The initial stage of risk management involves identifying risk factors, which is essential for planning
risk controls and mitigation strategies [10]. Numerous studies have developed risk breakdown
structures and identified critical risk factors in construction projects [2, 11-16]. Various tools and
techniques are discussed in the literature for identifying risk factors, such as brainstorming, expert
opinions, experience, checklists, questionnaires, and document reviews [10]. Morano, et al. [17]
confirmed that brainstorming was the most used technique for risk identification in projects. A group of
consultants can be utilized for brainstorming to identify potential risk factors. In many projects, however,
risk assessment may be conducted without the involvement of a consultant. One effective method for
identifying risks is through interviews, which can be referred to as expert judgment [18]. Due to the
similarity of construction projects, the experienced project manager can use his experience to identify
risk factors, as well as use checklist methods to determine the critical risk factors. As a result, past
experience and checklists can be counted as another tool and technique for risk determination[10, 19-
21].

Risk assessment is another stage in risk management. Based on past studies, different tools and
techniques can be explained. From the literature review, it is clear that there are two general
approaches widely used in project risk analysis: qualitative risk analysis and quantitative risk analysis
[22].

Qualitative risk analysis involves prioritizing risks for further examination or action by assessing
and combining their probability of occurrence and potential impact. This method, which lays the
foundation for quantitative risk analysis, is usually quick and economical. Risk Probability and Impact
Assessment, Probability and Impact Matrix, and Expert Judgment are frequently employed techniques
in qualitative risk analysis [5, 22-25]. Experts are used in qualitative risk assessment to identify risk
variables, estimate their likelihood, and determine their effect. [7, 23]. Ariyanto, et al. [26] and Lv, et al.
[27] argued that various techniques can be used to conduct qualitative risk assessments, one of which
is expert judgment.

Quantitative risk analysis is a process that mathematically evaluates the impact of identified risks
on overall project objectives. This analysis is conducted on risks that have already been prioritized
through the qualitative risk analysis process, as these risks are likely to have a significant effect on the
project. The primary quantitative techniques in use today are Sensitivity Analysis, Modeling and
Simulation, and Decision Trees. Among these, Monte Carlo Simulation is the most preferred method.[5,
22, 28]. In construction projects, risk assessment will be quantitative when the project schedule is added
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to the analysis [29]. Methods and tools that can be used for conducting quantitative risk assessment
include Monte Carlo simulation, fault tree analysis, and sensitivity analysis [5, 30]

Various studies have proposed frameworks and models to enhance the prediction of project costs,
duration, and performance in the construction industry. Attalla, et al. [31] introduced a reconstruction
framework based on statistical analysis and neural networks, identifying critical performance factors.
Kim and Reinschmidt [32] utilized Bayesian inference for cost forecasting, while Babar, et al. [33]
integrated risk to estimate completion costs. Du, et al. [34] aimed to improve cost prediction accuracy
with Markov chain simulations. Additionally, Rudeli, et al. [35] examined schedule deviations with
Markov models, and Jarkas [36] proposed a time-cost model using multiple regression for project
duration predictions. Mortaji, et al. [37] created indices for estimating final costs and durations through
change point analysis, whereas Lipke, et al. [38] and Leon, et al. [39] utilized various models, including
system dynamics, to predict outcomes based on project data. Chen [40] and Ling, et al. [41] employed
linear models and regression to increase cost and performance accuracy, respectively. In order to
examine construction costs in the face of uncertainty, especially in cases where costs and risk variables
are linked, Okmen and Oztas [42] put up a novel model based on simulations, known as the correlated
cost risk analysis model.

Assaad, et al. [43] quantified the impacts of risks on project performance, developed a
comprehensive assessment model, and correlated the system for predicting costs and time upon project
completion, employing a multistep research methodology. Lotfi, et al. [44] introduced a hew method in
machine learning called 3RML, which places an emphasis on project scheduling. This method is robust,
resilient, and risk-based. Aldhamad, et al. [45] concluded that simulation modeling has a revolutionary
influence on construction project management by providing enhanced tools for planning efficiency,
resource allocation, cost calculation, sustainability, and risk management.

Each model should be validated in the literature; different methods can be used for validating
models. Taha, et al. [46] developed a risk-driven Artificial Neural Network-based model using Mean
Absolute Percentage Error. However, due to the limited number of samples, the model was validated
through Leave-One-Project-Out Cross-Validation. Elmousalami [47] classified MAPE as an excellent
prediction if it is less than 10%. A MAPE between 10% and 20% is considered a good prediction. MAPE
values between 20% and 50% are categorized as acceptable forecasting, while values greater than
50% are deemed inaccurate predictions.

Different regression models can be used to develop a framework; power regression is one of the
methods that can be employed for nonlinear regression. Sharma and Chaudhary [48] created a software
effort estimating methodology that uses power regression for both object-oriented and procedural
applications. They used power regression and then multiplied the effort multipliers to come up with the
effort estimate model.

Recently, researchers have proposed hybrid approaches that combine qualitative and quantitative
methods[6, 7]. This review reveals a lack of research on how to make transferable, empirically calibrated
frameworks that turn qualitative activity-level risk assessments into useful cost and duration adjustment
factors for early planning. Another gap that can be highlighted is that most students relied on the risk
breakdown structure only, without considering the work breakdown structure. To address this, the
present study quantifies risk impacts by assigning expert-evaluated risk factors to construction activities
in multi-story building projects. A predictive model is then developed by integrating Monte Carlo
simulation with regression analysis, enabling reliable estimation of project duration and cost under
different risk conditions.

Research Methodology

Managing project risk involves several steps, each requiring various tools and methodologies. The
main objective of this study is to develop a model that helps project managers and estimators predict
the risk's impact on the overall project cost and duration. To achieve this objective, different tools and
techniques can be used throughout the entire stage of risk analysis. Numerous risk assessment
techniques exist [7]. The study tries to use a hybrid methodology that integrates qualitative and
guantitative risk assessment. In the following section, the ways that are employed in this study are
explained briefly.
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Research Framework

This study conducted the risk assessment in the high-rise buildings, so based on the case study
projects, a typical Work Breakdown Structure was developed. The WBS divided the projects into five
main categories, which include earthwork, structure, finishing, mechanical, and electrical. Accordingly,
a spreadsheet with a list of related risks was created for each task. Through an interview, experts were
asked to choose the critical risks for each task based on their experience in order to conduct a qualitative
risk assessment. Additionally, they were then asked to estimate the likelihood and impact of the chosen
risk factors. The risk factors are used to conduct quantitative risk assessment after determining each
risk factor's probability and impact. The risk propagation begins with the assignment of risk factors to
each activity schedule, allowing for the subsequent conduct of quantitative risk assessment. Finally, the
project risk score in terms of time and cost was then calculated using a Monte Carlo simulation. Figure
1 shows the methodology used in this investigation.

Create WBS Risk Identification

l

Expert Judgment

Develop project Qualitative risk
schedule assesment

v

Quantitative risk
assessment

Figure 1. Adopted Method
Qualitative Risk Analysis

The qualitative risk analysis was performed to determine risk probability and impact. For each task,
a list of risk factors was established by reviewing various studies related to construction projects, and it
was organized in a spreadsheet. The experts were interviewed to identify the critical risk factors along
with their probability and impact. The experts were selected based on their experience in high-rise
buildings, with each having more than 10 years of experience. The experts were asked to select a risk
factor for each task and estimate the probability and impact by choosing one of the following options:
very low, low, medium, high, or very high. Before conducting a quantitative risk assessment, the data
were converted to a scale referenced in PMBOK, with probability and impact expressed as percentages,
as shown in Table 2 [18] .

Table 1. Probability and Impact Scale

Probability % Probability Impact % Impact
Very high 90% Critical 80%
High 80% Serious 40%
Medium 50% Moderate 20%

Low 30% Minor 10%
Very low 10% Negligible 5%
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Case Study Selection

The case study projects were selected based on the availability of the project schedule and
estimated costs. The risk factors assigned to the project schedule were analyzed using Risky Project
Professional, and a Monte Carlo simulation was performed. The results for each expert and each project
were compiled to determine the project cost score and duration score.

This study selected four projects that are already under construction. The first project consists of
a 20-story tower. The original duration is estimated to be 1,073 days, with an original cost of
$15,053,415. The second project involves four towers, each consisting of 40 stories, with an original
duration of 988 days and an original cost of $81,868,876. The third project comprises 12 towers, each
towers have 20 stories, and it is decided to construct in two different phases with an original duration of
2,132 days and an original cost of $249,506,228. The fourth project includes 9 towers, with an original
duration of 1,174 days and an original cost of $151,665,040.

Quantitative Risk Analysis

The next step is a quantitative risk assessment. When the risk factors are assigned to the activities
in the project schedule, the qualitative risk analysis can be converted into a quantitative risk analysis.
The Monte Carlo simulation was applied to four case study projects. Risky Project Professional version
7.2 is used for applying the Monte Carlo simulation to each project, and as a result, three different
durations and costs can be identified. For duration, the results will indicate low duration, base duration,
and high duration; for cost, the findings will show low cost, base cost, and high cost.

Model Development

The final goal of this study is to develop a model that will assist project managers in predicting
project duration and cost while considering risks. The Monte Carlo results for each project and each
expert will have three different levels: low, base, and high. The mean score can be calculated using the
arithmetic mean for each set of data, which includes the duration at low risk, base risk, and high risk,
as well as the project cost at low, base, and high risk. The model can be developed using a non-linear
regression technique called power regression, which is based on the following equation[48, 49]:

Y=ax* Xb (1)
While Y is the dependent variable, X is the independent variable, and a and b are constant values.

Finally, the regression model will be developed using SPSS and validated using Leave-One-
Project-Out Cross-Validation (LOPOCV). This will involve calculating the Mean Absolute Percentage
Error (MAPE) [50], as shown in Equation 2.

1 n
MAPE= —Z
Nlaij=g

Actual(i)—Predicted (i)
Actual (i)

100 )

Result and Discussion

The main goal of this study is to convert the risk factors into value in order to help project managers
estimate the cost and duration of projects while considering the impact of risks. The process begins
with developing a Work Breakdown Structure (WBS) and identifying risk factors. Then, expert engineers
were asked to select the critical risks associated with each task, estimating both the probability and
impact of these risks. The WBS, along with the response from one of the randomly selected experts, is
shown in Table 2.
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Table 2. Work Breakdown Structure (WBS) and Expert Response.

Typical Tower Work Breakdown Structure
WBS Task Name Risk factor Probability Impact
Code
11 Earth Work
11.1 Excavation Design changes, Medium Moderate
1.1.2 Pile Excavation Low productivity of equipment, Medium Moderate
1.1.3 Back Filling Site obstacles (access, existing services, size of Medium Minor
the location...etc),
1.2 Structure
1.2.1 Pile Difficulty during concrete pouring Low Minor
1.2.2 Foundation Delay in supplying materials (Concrete, steel) High Moderate
1.2.3 Column And Shear Wall Delay in supplying materials (Concrete, steel) Low Moderate
1.2.4 Slab Low productivity of labour, Medium Moderate
1.3 Finishing
13.1 Lightweight Concrete Low productivity of labour Medium Minor
Block
1.3.2 Sand Cement Plaster Low productivity of labour Medium Minor
1.3.3 Gypsum Plaster Low productivity of labour Medium Moderate
1.3.4 Screeding Low productivity of labour Medium Minor
1.35 Tile Material delivery Low Minor
1.3.6 Gypsum Board False Low productivity of labour Low Minor
Ceiling
1.3.7 Interior Walls And Ceiling None Very Low Negligible
Paint
1.3.8 Facade Cement Plastering | Low productivity of labour Medium Minor
1.3.9 Aluminum Windows And Material delivery Medium Moderate
Doors
1.3.10 Facade Natural Stone Low productivity of labour Medium Moderate
1.3.11 Balcony Glass Balustrade Material delivery Medium Minor
1.3.12 Door Material delivery High Moderate
1.3.13 Kitchen Cabinet Amed Material delivery Medium Moderate
1.3.14 Parquet Material delivery Low Minor
1.3.15 Landscape Low productivity of labour Medium Minor
1.3.16 Podium Cladding Low productivity of labour Medium Moderate
1.3.17 Podium Aluminum Stick Low productivity of labor Medium Minor
Facade
1.3.18 Car Park Painting None Very Low Negligible
14 Electrical
14.1 Inside Building Design changes, Medium Serious
14.2 Low Current System Low Productivity of labor Medium Minor
143 Electrical Substation Delay in supplying materials Medium Minor
1.4.4 (Busbar, Db & Transformer | Delay in supplying materials Medium Moderate
)
145 Facade Lighting Unpredicted technical problems during Medium Minor
construction
1.4.6 Electrical Works On None Very Low Negligible
Basements
15 Mechanical
1.5.1 Plumbing None Very Low Negligible
15.2 Firefighting Design changes, Low Minor
153 Ventilation Work None Very Low Negligible
1.5.4 Hvac Delay in supplying materials Medium Minor
155 Lpg Site obstacles (access, existing services, size of Low Minor
the location...etc)
1.5.6 Elevator Delay in supplying materials Low Minor
1.5.7 Lavatory None Very Low Negligible
1.5.8 Firefighting (Basement) None Very Low Negligible
1.5.9 Sewage Treatment Plant None Very Low Negligible
1.5.10 Garbage Chute Unpredicted technical problems during Low Minor
construction
1.5.11 Grp Tank Unpredicted technical problems during Very Low Minor
construction
1.5.12 Booster & Submersible None Very Low Negligible
Pumps
1.5.13 Firefighting Pump None Very Low Negligible
1.5.14 Car Park Ventilation None Very Low Negligible
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The quantitative risk assessment result can be determined by assigning risk factors to each task
in the four case study projects. Additionally, a distinct Monte Carlo simulation was carried out for every
project and expert's outcome. Tables 3, 4, 5, and 6 display the Mont Carlo simulation results, which
include the low duration, base duration, high duration, low cost, base cost, and high cost. Equations 2
and 3 were used to compare the modified values to the original data to calculate the project risk score:

Duration Risk Score = Project Duration with Risk / Original Project Duration (2)
Cost Risk Score = Project Cost with Risk / Original Project Cost 3)

Table 3. Monte Carlo Simulation Results for the First Case Study Project.

Respond | Low Base High Low Base High Low Cost Base High Cost | Low Base High
No. Duration | Duration | Duration | Duration | Duration | Duration | ($) Cost ($) ($) Cost Cost Cost

(Day) (Day) (Day) Score Score Score Score | Score | Score
R1 1097 1170 1242 1.02 1.09 1.16 | 15843688 | 17237592 | 18601557 | 1.05 1.15 1.24
R2 1099 1177 1254 1.02 1.10 1.17 | 15218191 | 16104062 | 16886357 | 1.01 1.07 112
R3 1176 1290 1383 1.10 1.20 1.29 | 15937567 | 16734702 | 17766593 | 1.06 1.11 1.18
R4 1193 1295 1399 1.11 1.21 1.30 | 15897514 | 16870987 | 17827544 | 1.06 112 1.18
R5 1225 1274 1323 1.14 1.19 1.23 | 17097767 | 17771308 | 18383151 | 1.14 1.18 1.22
R6 1320 1406 1466 1.23 1.31 1.37 | 16539494 | 17318071 | 17979624 | 1.10 1.15 1.19
R7 1174 1294 1419 1.09 1.21 1.32 | 16348275 | 18354704 | 20398542 | 1.09 1.22 1.36
R8 1073 1112 1137 1.00 1.04 1.06 | 15205652 | 15487765 | 15801336 | 1.01 1.03 1.05
R9 1225 1384 1515 1.14 1.29 1.41 | 16412151 | 17018068 | 17616640 | 1.09 1.13 1.17
R10 1190 1293 1398 1.11 1.21 1.30 | 16012864 | 17081710 | 18254379 | 1.06 1.13 1.21
R11 1196 1247 1295 1.11 1.16 1.21 | 15814119 | 16484389 | 17239855 | 1.05 1.10 1.15
R12 1168 1220 1265 1.09 1.14 1.18 | 15842848 | 16226114 | 16610957 | 1.05 1.08 1.10
R13 1144 1244 1329 1.07 1.16 1.24 | 16026675 | 17088831 | 18153569 | 1.06 1.14 1.21
R14 1330 1440 1557 1.24 1.34 1.45 | 17627058 | 19376814 | 21200928 | 1.17 1.29 1.41
R15 1223 1294 1350 1.14 1.21 1.26 | 18499852 | 18878539 | 19598998 | 1.23 1.25 1.30

Table 4. Monte Carlo Simulation Results for the Second Case Study Project.

Low Base High Low Base High Low Base High
Respond | Duration | Duration | Duration | Duration | Duration | Duration | Low Cost | Base High Cost | Cost Cost Cost
No. (Day) (Day) (Day) Score Score Score ($) Cost ($) $) Score | Score | Score
R1 988 1094 1204 1.00 1.11 1.22 | 84539860 | 89145613 | 93872334 1.03 1.09 1.15
R2 988 1062 1135 1.00 1.07 1.15 | 88351201 | 88351201 | 94143516 1.07 1.07 1.14
R3 1019 1216 1321 1.03 1.23 1.34 | 87812777 | 92078388 | 96162982 1.07 1.12 1.17
R4 1031 1139 1246 1.04 1.15 1.26 | 87872562 | 94760083 | 101393478 | 1.07 1.16 1.24
R5 1123 1187 1249 1.14 1.20 1.26 | 91705304 | 96756526 | 101470925 | 1.12 1.18 1.24
R6 989 1051 1082 1.00 1.06 1.10 | 86507149 | 91713751 | 95989661 1.06 1.12 1.17
R7 1060 1224 1430 1.07 1.24 1.45 | 90400628 | 98012981 | 106310312 | 1.10 1.20 1.30
R8 989 1051 1115 1.00 1.06 1.13 | 83217707 | 85467445 | 87644036 1.02 1.04 1.07
R9 1132 1253 1435 1.15 1.27 1.45 | 91363737 | 95577581 | 99508043 1.12 1.17 1.22
R10 1000 1116 1211 1.01 1.13 1.23 | 88214081 | 94668019 | 101752791 | 1.08 1.16 1.24
R11 1000 1090 1167 1.01 1.10 1.18 | 84458388 | 90437236 | 96272271 1.03 1.10 1.18
R12 1060 1145 1211 1.07 1.16 1.23 | 88965618 | 92717203 | 96066822 1.09 1.13 1.17
R13 1007 1119 1202 1.02 1.13 1.22 | 84660680 | 88956092 | 93732117 1.03 1.09 1.14
R14 1031 1251 1494 1.04 1.27 1.51 | 87575285 | 97360988 | 107438131 | 1.07 1.19 1.31
R15 994 1178 1270 1.01 1.19 1.29 | 85796815 | 92807608 | 98166489 1.05 1.13 1.20
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Table 5. Monte Carlo simulation results for the third case study project.

Low Base | High
Low Base High Low Base High Cost Cost Cost
Respon Duration | Duration | Duration Duration Duration | Duration | Low Cost | Base Cost | High Cost | Scor Scor Scor
d No. (Day) (Day) (Day) Score Score Score $) $) ($) e e e
R1 2132 2418 2681 1.00 1.13 1.26 | 257398054 | 271435091 | 285852760 | 1.03 1.09 1.15
R2 2146 2310 2492 1.01 1.08 1.17 | 252193149 | 268494033 | 287254992 | 1.01 1.08 1.15
R3 2269 2497 2696 1.06 1.17 1.26 | 267076225 | 280352408 | 292835842 | 1.07 1.12 1.17
R4 2198 2517 2856 1.03 1.18 1.34 | 266557119 | 288880800 | 310146681 | 1.07 1.16 1.24
R5 2344 2540 2692 1.10 1.19 1.26 | 279004388 | 294168054 | 308332714 | 1.12 1.18 1.24
R6 2156 2334 2415 1.01 1.09 1.13 | 263427242 | 279780700 | 293417509 | 1.06 1.12 1.18
R7 2228 2653 3112 1.05 1.24 1.46 | 274462870 | 297845541 | 323741096 | 1.10 1.19 1.30
R8 2138 2237 2324 1.00 1.05 1.09 | 253524790 | 260344977 | 267007917 | 1.02 1.04 1.07
R9 2276 2478 2706 1.07 1.16 1.27 | 277992050 | 290741135 | 302476619 | 1.11 1.17 1.21
R10 2192 2520 2849 1.03 1.18 1.34 | 269607809 | 289379870 | 311538641 | 1.08 1.16 1.25
R11 2182 2377 2616 1.02 1.11 1.23 | 256916512 | 275242963 | 293068833 | 1.03 1.10 1.17
R12 2240 2335 2426 1.05 1.10 1.14 | 271432624 | 283429972 | 293150453 | 1.09 1.14 1.17
R13 2182 2389 2577 1.02 1.12 1.21 | 257543353 | 270804775 | 285294635 | 1.03 1.09 1.14
R14 2223 2571 3188 1.04 1.21 1.50 | 265861900 | 301150627 | 333856130 | 1.07 1.21 1.34
R15 2176 2693 2938 1.02 1.26 1.38 | 261295001 | 281772316 | 297308102 | 1.05 1.13 1.19
Table 6. Monte Carlo Simulation Results for the Fourth Case Study Project.
Low Base High Low Base High Low Base High
Respond | Duration | Duration | Duration | Duration | Duration | Duration | Low Cost | Base Cost [ High Cost | Cost Cost Cost
No. (Day) (Day) (Day) Score Score Score $) $) ()] Score | Score | Score
R1 1174 1271 1406 1.00 1.08 1.20 | 155715470 | 166976313 | 180652731 | 1.03 1.10 1.19
R2 1174 1274 1336 1.00 1.09 1.14 | 153817184 | 164966764 | 175375051 | 1.01 1.09 1.16
R3 1243 1406 1522 1.06 1.20 1.30 | 163506400 | 172124164 | 180630683 | 1.08 1.13 1.19
R4 1204 1298 1392 1.03 1.11 1.19 | 162190745 | 173318510 | 186854989 | 1.07 1.14 1.23
R5 1294 1385 1470 1.10 1.18 1.25 | 168643106 | 178110009 | 187078843 | 1.11 1.17 1.23
R6 1174 1216 1249 1.00 1.04 1.06 | 159193791 | 166640028 | 173741426 | 1.05 1.10 1.15
R7 1255 1408 1567 1.07 1.20 1.33 | 164491886 | 182928590 | 201540615 | 1.08 1.21 1.33
R8 1205 1236 1269 1.03 1.05 1.08 | 153715041 | 157640666 | 161727038 | 1.01 1.04 1.07
R9 1313 1388 1449 1.12 1.18 1.23 | 165328513 | 171946970 | 179888925 | 1.09 1.13 1.19
R10 1241 1352 1509 1.06 1.15 1.29 | 160507415 | 174905066 | 188392789 | 1.06 1.15 1.24
R11 1205 1289 1388 1.03 1.10 1.18 | 157339647 | 166194654 | 175061311 | 1.04 1.10 1.15
R12 1255 1288 1311 1.07 1.10 1.12 | 162663519 | 168084714 | 173266813 | 1.07 1.11 1.14
R13 1213 1321 1419 1.03 1.13 1.21 | 159142853 | 168478613 | 179246430 | 1.05 1.11 1.18
R14 1255 1480 1608 1.07 1.26 1.37 | 173487603 | 192082715 | 209382852 | 1.14 1.27 1.38
R15 1234 1394 1475 1.05 1.19 1.26 | 158311050 | 177219539 | 188057855 | 1.04 1.17 1.24

The results of the Monte Carlo simulation can be used to determine the overall project risk impact
in terms of cost and duration. Based on the arithmetic average of each scenario, the low-risk project
duration score will be 1.06. A project with base risk will receive a duration score of 1.16, while the worst-
case scenario with high risk will receive a score of 1.25. Using the same formula to assess costs, the
average scores for low-cost risk, base-cost risk, and high-cost risk are 1.07, 1.13, and 1.20,
respectively.

The study employed regression analysis to create a formula that aids estimators and project
managers in project duration and cost estimation. The model was developed by analyzing the Monte
Carlo results of fifteen experts from four different projects using SPSS 27. To increase estimation
accuracy, this study employed regression analysis to determine a relationship between baseline
estimates and risk-adjusted outcomes. The dataset consisted of 180 observations from Monte Carlo
simulations (15 experts across 4 projects). The regression results are shown in Tables 7 and 8. In the
duration-based analysis, the quadratic and cubic models exhibit the highest R-squared values. The
power and linear models also show high R-squared values. However, since the project score is
calculated by multiplying the probability by the impact and connecting it to the initial duration, the power
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model, which yields the highest R-squared value for cost, will be the most useful. The following is the

formula for this relationship:

Duration with risks = constant * (Original Duration)b!

Cost with risks = constant * (Original Cost)b!

Specifically, the equation can be expressed as:

Duration with risks = 1.301 * (Original Duration)©-983
Cost with risks = 1.211 * (Original Cost)®-9%

(4)
(%)

Table 7. Model Summary and Parameter Estimates for Duration

Dependent Variable: Duration with risk

Model Summary Parameter Estimates
Equation R Square  |F dfl df2 Sig. Constant bl b2 b3
Linear .910 1805.259 |1 178 .000 21.877 1.140
Logarithmic 905 1698.532 |1 178 .000 -10831.349  |1731.647
Inverse .891 1449.653 |1 178 .000 3587.415 -2491311.753
Quadratic 1911 901.071 2 177 .000 349.513 .678 .000
Cubic 1911 901.272 2 177 .000 272.444 .866 .000 3.481E-8
Compound 905 1695.755 |[1 178 .000 618.899 1.001
Power .906 1718.121 |1 178 .000 1.301 .983
S .899 1587.236 |1 178 .000 8.454 -1420.350
Growth .905 1695.755 |[1 178 .000 6.428 .001
Exponential |.905 1695.755 |[1 178 .000 618.899 .001
Logistic .905 1695.755 |1 178 .000 .002 .999
'The independent variable is Original Duration.

Table 8. Model Summary and Parameter Estimates for Cost
Dependent Variable: Cost with risk
Model Summary Parameter Estimates

Equation R Square  |F df1 df2 Sig. Constant bl b2 b3
Linear .986 12941.906 |1 178 .000 234876.346 1.130
Logarithmic  |.849 1004.671 |1 178 .000 11426074884.565[85960193.056
Inverse .630 302.573 1 178 .000 209197559.676 |-3057201093330093.500
IQuadratic .986 6435.300 2 177 .000 134666.027 1.135 -1.930E-11
Cubic .986 4266.976 |3 176 .000 431760.370 1.112 2.224E-10  |6.180E-19
ICompound .858 1074.037 1 178 .000 22957792.340  [1.000
Power .996 42780.263 |1 178 .000 1.211 .996
S .926 2216.442 |1 178 .000 19.240 -39682050.580
Growth .858 1074.037 |1 178 .000 16.949 1.128E-8
Exponential  |.858 1074.037 |1 178 .000 22957792.340  [1.128E-8
Logistic .858 1074.037 1 178 .000 4.356E-8 1.000

[The independent variable is Original Cost.

Different models were developed for the low, base, and high-risk project duration and cost
scenarios in order to improve the power regression models' dependability. LOPOCV was used to
assess the robustness and generalizability of the model by progressively eliminating each project from
the calibration dataset and generating independent predictions. The validation results, which show each
model's excellent predictive performance, are shown in Table 9.
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Table 9. Leave-One-Project-Out Cross-Validation and MAPE Result

Model Parameter
Summary | Estimates
Test Project | R Square | Constant | bl %Error | %MAPE
A 0.989 1.114 0.990 6.10%
] B 0.974 1.759 0.930 5.89% .
Low duration c 0.645 0.847 1033 — 5.09%
D 0.976 1.428 0.958 3.03%
A 0.973 1.133 1.002 5.95%
Base B 0.961 1.327 0.981 5.23%
. - 5.96%
duration c 0.496 2677 | 0.880 | 7379
D 0.969 1353 | 0979 | 5070
A 0.938 1075 | 1.020 | g36%
_ B 0.936 1.007 | 1.029 | 7580 .
High duration c 0300 6725 0758 18.36% 9.85%
D 0.941 1.232 1.003 7.11%
A 0.995 1.159 0.995 2.68%
B 0.999 1207 | 0993 | 350
0,
LowCost =2 0998  |1222 | 0993 | g9 | 200
D 0.999 1.202 0.994 2.63%
A 0.992 1.110 1.001 4.27%
B 0.998 1201 | 0997 | 3260 .
Base Cost 0 0098 | 1.207 | 0.997 | 54005 | 027
D 0.998 1208 | 0996 | 3560
A 0.985 1155 | 1.002 | 5g79
_ 5 0.997 1228 | 0999 | 4399 .
High Cost = 0096 | 1220 | 0999 | 2500 | 4%
D 0.997 1.241 0.998 4.79%

All of the data was subjected to the LOPOCV, and the percentage error was computed
independently to verify the validation. Lastly, each formula's percentage MAPE was calculated. The
minimum percentage error for the project duration prediction formula that takes low-risk events into
account is 3.03%. When Project D, the fourth project, was excluded, this data was acquired.
Furthermore, this formula's % MAPE of 5.09% shows excellent prediction because it is less than 10%.
Based on this outcome, the following model will be created to forecast project duration while taking low-
risk occurrence and impact into account:

Duration with Low Risks = 1.384 * (Original Duration)?-962 (6)

The study discovered that there is significant variation between projects in the base risk duration
prediction model's %MAPE analysis. Project B (5.23%) and Project C (7.37%) had the lowest and
highest deviations, respectively. Nonetheless, the average %MAPE of 5.96% shows that the model can
make accurate predictions for projects with base-level risks and is within acceptable prediction bounds
of less than10%. Accordingly, the predictive relationship for estimating project duration under base-risk
conditions is expressed as:

Duration with Base Risks = 1.281 * (Original Duration)©-986 )

The predictive variability was higher for the high-risk duration model, as evidenced by calibration.
The least erroneous result was 6.36% with the exclusion of Project A, whereas excluding Project C
resulted in maximum error (18.36%), showing that when risk is very high, error compliance increases.
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However, the average %MAPE of 9.85% remains below the 10% guideline, and thus it indicates that
the model can still give somewhat accurate duration estimates under relatively high-risk conditions.
The predictive formula is given as

Duration with High Risks = 1.14 * (Original Duration)*013 (8)

In terms of the low-risk cost prediction model, there is strong evidence by both %MAPE and R2 in
favour of robust performance. The R2 values are between 0.995 and 0.999 meaning that almost all
variation in project cost is explained by the model. The lowest percentage error was in project B
(2.35%) and the highest was in project A (2.68%). On the whole, with percent mean absolute
percentage error of 2.58%, the study found a very good prediction accuracy, indicating that this MA
model is suitable to estimate costs in low-risk environment. The model is expressed as:

Cost with Low Risks = 1.206 * (Original Cost)%-993 9)

The base-risk cost prediction model also demonstrates strong predictive capability. R? values
range from 0.992 to 0.998, indicating excellent goodness of fit. The minimum error occurred when
Project B was excluded (3.26%), while the maximum error was observed for Project A (4.27%). Despite
this variation, the overall %MAPE of 3.62% confirms that the model remains highly accurate and well
within the 10% acceptability threshold. The predictive formula is as follows:

Cost with Base Risks = 1.200 * (Original Cost)%-997 (10)

Evaluation of the high-risk cost prediction model demonstrates strong statistical reliability, with R2
values ranging between 0.985 and 0.997, indicating that the model successfully explains the vast
majority of the variation in project cost, even under elevated risk conditions. The minimum percentage
error was obtained when Project B was excluded, yielding a value of 4.39%, whereas the maximum
deviation was observed for Project A, with an error of 5.67%. Despite the greater uncertainty associated
with high-risk environments, the model achieved an overall %MAPE of 4.84%, reflecting excellent
predictive accuracy and confirming its suitability for forecasting project cost under high-risk scenarios.
Based on these results, the developed predictive relationship for estimating project cost considering
high-risk occurrence and impact is expressed as follows:

Cost with High Risks = 1.227 * (Original Cost)?-999 (11)

The power regression models demonstrated low prediction errors and high coefficients of
determination in every scenario according to the LOPOCV validation results, demonstrating their
robustness and dependability. As a result, power regression can be chosen as the ultimate modeling
technique to forecast project duration and cost in low, base, and high risk scenarios.

Conclusion

Risk management is a crucial area in construction projects, as risks can significantly impact time,
cost, quality, and safety. Nowadays, it is important to plan effectively in order to consider the risk factors
that affect the project's main objectives. This study focuses on the impact of risk in terms of time and
cost. This study developed a practical task-based risk scoring framework that employs qualitative expert
assessment, Monte Carlo simulation, and regression analysis to determine the impact of risks on project
cost and duration. To this end, a two-stage method was employed to collect data using interviews of
experts, which qualitatively extracted risk factors. A Monte Carlo analysis was also conducted to
translate the risk impact and probability into an overall project risk contribution. A second detail of this
study is that the risk factors were established for each task within the project, in accordance with the
usual WBS assumption. The arithmetic mean of the Monte Carlo results showed that the project
duration score with low risk will be 1.06, which is equivalent to a 6% increase in overall project duration.
The project duration base risk score was equal to 1.16, and the project duration risk score with high risk
was equal to 1.25. Based on this result, it can be concluded that when risk is not controlled, the project
duration might be increased by 25% in the worst-case scenario. Conversely, the results indicated that
the risk factors also contributed to cost overruns. The average scores were 1.07 for low-cost risk, 1.13
for base cost risk, and 1.20 for high-cost risk. Finally, based on the data, the study started with
qualitative analysis and then conducted quantitative risk assessment, which is used to effectively
transform qualitative risk perceptions into measurable adjustment factors at the project level. Through
a power regression model, various formulas were developed to predict the impact on project costs and
duration. These formulas are designed to assist engineers in calculating project duration and costs
while considering risks. Strong model stability and low error values were confirmed by Leave-One-
Person-Out Cross-Validation, demonstrating the predictive capability of the power regression models.
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For preliminary planning and feasibility assessments, these predictive equations serve as a reliable
decision-support tool.
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