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Abstract  

Construction projects often experience cost overruns and delay due to the cumulative effect of many 
risks happening in different activities. Regression-based forecasting, Monte Carlo simulation, and 
qualitative risk assessment are all well-established techniques, but their integration into a useful and 
transferable early-stage risk forecasting framework is still lacking. In order to convert expert risk 
assessments at the activity level into empirically calibrated project-level cost and duration multipliers, 
this study suggests a task-based risk scoring model. The study combines Monte Carlo simulation of 
project schedules and costs with expert-based qualitative risk identification organized using a 
standardized work breakdown structure. Power regression was used to create predictive 
relationships between baseline estimates and risk-adjusted outcomes using data from four multi-
story building projects. Leave-One-Project-Out Cross-Validation (LOPOCV) was used to evaluate 
the robustness of the model, and Mean Absolute Percentage Error (MAPE) was determined to 
evaluate the accuracy, confirming low prediction error and strong explanatory capability. 
Dimensionless cost and duration scores are produced by the framework and can be immediately 
applied to baseline estimates. The findings show that while high-risk scenarios may increase 25% 
of project duration and 20% project cost, respectively, even low-risk scenarios may increase project 
duration and cost by roughly 6% and 7%. 

Keywords: Risk analysis, Risk score, Regression, and Monte Carlo Simulation. 

 

Introduction 

Construction projects are complex processes that require careful management to ensure 
completion within the planned schedule, while minimizing costs and maintaining acceptable quality 
standard. Risks frequently lead to cost overruns, schedule delays, and reductions in quality. These 
issues typically arise due to the complexity of planning, designing, and constructing [1]. Projects that 
successfully manage risks proactively identify, assess, and mitigate potential consequences [2]. Risk 
management must be carefully considered when managing construction projects. It is essential to 
identify the critical risk factors at the preconstruction stage in order to reduce the impact of risks during 
the execution phase [3].  Risk identification varies across projects. However, when a Risk Breakdown 
Structure (RBS) is integrated with a Work Breakdown Structure (WBS), the resulting assessment 
becomes more realistic, structured, and reliable. Another essential part of risk management is 
quantifying risk factors based on their impact and likelihood. In construction projects, each task may 
face different risks. By assigning risk factors to individual tasks, an overall project risk score can be 
computed. This risk score can provide information about the overall project costs and durations based 
on the risk factors associated with each task. Risks can affect expenditures, time, quality, and safety in 
a number of ways. For risk factors that impact quality and safety, a robust risk management strategy 
can be developed and implemented. Similarly, in order to determine the overall project duration and 
expenses while accounting for these risks, risk factors that affect time and cost should be identified and 
planned for prior to construction.  
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Different tools and techniques can be used for risk analysis, which include historical data, expert 
opinions, theoretical analysis, and other approaches for risk identification. Analyzing risks can be 
conducted using both qualitative and quantitative methods [4]. 

Conventional construction risk management frameworks use expert judgment to identify and rank 
risks qualitatively. Although these methods are helpful in increasing awareness and promoting 
communication, they frequently lack a clear link to the overall project cost and schedule forecasting. 
However, quantitative risk analysis techniques like Monte Carlo simulation rely on specific probabilistic 
inputs that are usually unavailable in the early phases of planning [5]. 

In order to maintain their applicability, interpretability, and transferability across different projects, 
recent research has highlighted the need for hybrid methodologies that integrate qualitative and 
quantitative techniques. However, many of the existing hybrid models either produce probabilistic 
results that are impractical for use in making quick decisions or are unduly focused on particular use 
cases [6, 7].  

The objective of this study is to quantify the impact of task-level risks on overall project cost and 
duration by integrating expert risk assessments with risk propagation across multiple construction case 
studies. The study aims to identify low, base, and high risk conditions and to formulate regression-
based relationships that enable early prediction of risk-induced time and cost overruns to support 
practical decision-making in construction projects. 

Literature Review  

Risk Management consists of the chain of steps starting with risk identification, analysis, 
evaluation, and risk treatment [3, 8, 9]. Barghi [6] explained the steps of risk assessment, which start 
with planning, identifying, qualitative and quantitative analysis, response planning, and controlling 

The initial stage of risk management involves identifying risk factors, which is essential for planning 
risk controls and mitigation strategies [10]. Numerous studies have developed risk breakdown 
structures and identified critical risk factors in construction projects [2, 11-16].  Various tools and 
techniques are discussed in the literature for identifying risk factors, such as brainstorming, expert 
opinions, experience, checklists, questionnaires, and document reviews [10]. Morano, et al. [17] 
confirmed that brainstorming was the most used technique for risk identification in projects. A group of 
consultants can be utilized for brainstorming to identify potential risk factors. In many projects, however, 
risk assessment may be conducted without the involvement of a consultant. One effective method for 
identifying risks is through interviews, which can be referred to as expert judgment [18]. Due to the 
similarity of construction projects, the experienced project manager can use his experience to identify 
risk factors, as well as use checklist methods to determine the critical risk factors. As a result, past 
experience and checklists can be counted as another tool and technique for risk determination[10, 19-
21]. 

Risk assessment is another stage in risk management. Based on past studies, different tools and 
techniques can be explained. From the literature review, it is clear that there are two general 
approaches widely used in project risk analysis: qualitative risk analysis and quantitative risk analysis 
[22]. 

Qualitative risk analysis involves prioritizing risks for further examination or action by assessing 
and combining their probability of occurrence and potential impact. This method, which lays the 
foundation for quantitative risk analysis, is usually quick and economical. Risk Probability and Impact 
Assessment, Probability and Impact Matrix, and Expert Judgment are frequently employed techniques 
in qualitative risk analysis [5, 22-25]. Experts are used in qualitative risk assessment to identify risk 
variables, estimate their likelihood, and determine their effect. [7, 23]. Ariyanto, et al. [26] and Lv, et al. 
[27] argued that various techniques can be used to conduct qualitative risk assessments, one of which 
is expert judgment.  

Quantitative risk analysis is a process that mathematically evaluates the impact of identified risks 
on overall project objectives. This analysis is conducted on risks that have already been prioritized 
through the qualitative risk analysis process, as these risks are likely to have a significant effect on the 
project. The primary quantitative techniques in use today are Sensitivity Analysis, Modeling and 
Simulation, and Decision Trees. Among these, Monte Carlo Simulation is the most preferred method.[5, 
22, 28]. In construction projects, risk assessment will be quantitative when the project schedule is added 
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to the analysis [29]. Methods and tools that can be used for conducting quantitative risk assessment 
include Monte Carlo simulation, fault tree analysis, and sensitivity analysis [5, 30] 

 Various studies have proposed frameworks and models to enhance the prediction of project costs, 
duration, and performance in the construction industry. Attalla, et al. [31] introduced a reconstruction 
framework based on statistical analysis and neural networks, identifying critical performance factors. 
Kim and Reinschmidt [32] utilized Bayesian inference for cost forecasting, while Babar, et al. [33] 
integrated risk to estimate completion costs. Du, et al. [34] aimed to improve cost prediction accuracy 
with Markov chain simulations. Additionally, Rudeli, et al. [35] examined schedule deviations with 
Markov models, and Jarkas [36] proposed a time-cost model using multiple regression for project 
duration predictions. Mortaji, et al. [37] created indices for estimating final costs and durations through 
change point analysis, whereas Lipke, et al. [38] and Leon, et al. [39]  utilized various models, including 
system dynamics, to predict outcomes based on project data. Chen [40] and Ling, et al. [41] employed 
linear models and regression to increase cost and performance accuracy, respectively. In order to 
examine construction costs in the face of uncertainty, especially in cases where costs and risk variables 
are linked, Ökmen and Öztaş [42] put up a novel model based on simulations, known as the correlated 
cost risk analysis model. 

Assaad, et al. [43] quantified the impacts of risks on project performance, developed a 
comprehensive assessment model, and correlated the system for predicting costs and time upon project 
completion, employing a multistep research methodology. Lotfi, et al. [44] introduced a new method in 
machine learning called 3RML, which places an emphasis on project scheduling. This method is robust, 
resilient, and risk-based. Aldhamad, et al. [45] concluded that simulation modeling has a revolutionary 
influence on construction project management by providing enhanced tools for planning efficiency, 
resource allocation, cost calculation, sustainability, and risk management. 

 Each model should be validated in the literature; different methods can be used for validating 
models. Taha, et al. [46] developed a risk-driven Artificial Neural Network-based model using Mean 
Absolute Percentage Error. However, due to the limited number of samples, the model was validated 
through Leave-One-Project-Out Cross-Validation. Elmousalami [47]  classified MAPE as an excellent 
prediction if it is less than 10%. A MAPE between 10% and 20% is considered a good prediction. MAPE 
values between 20% and 50% are categorized as acceptable forecasting, while values greater than 
50% are deemed inaccurate predictions. 

Different regression models can be used to develop a framework; power regression is one of the 
methods that can be employed for nonlinear regression. Sharma and Chaudhary [48] created a software 
effort estimating methodology that uses power regression for both object-oriented and procedural 
applications. They used power regression and then multiplied the effort multipliers to come up with the 
effort estimate model. 

Recently, researchers have proposed hybrid approaches that combine qualitative and quantitative 
methods[6, 7]. This review reveals a lack of research on how to make transferable, empirically calibrated 
frameworks that turn qualitative activity-level risk assessments into useful cost and duration adjustment 
factors for early planning. Another gap that can be highlighted is that most students relied on the risk 
breakdown structure only, without considering the work breakdown structure. To address this, the 
present study quantifies risk impacts by assigning expert-evaluated risk factors to construction activities 
in multi-story building projects. A predictive model is then developed by integrating Monte Carlo 
simulation with regression analysis, enabling reliable estimation of project duration and cost under 
different risk conditions. 

Research Methodology 

Managing project risk involves several steps, each requiring various tools and methodologies. The 
main objective of this study is to develop a model that helps project managers and estimators predict 
the risk's impact on the overall project cost and duration. To achieve this objective, different tools and 
techniques can be used throughout the entire stage of risk analysis. Numerous risk assessment 
techniques exist [7]. The study tries to use a hybrid methodology that integrates qualitative and 
quantitative risk assessment. In the following section, the ways that are employed in this study are 
explained briefly. 
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Research Framework 

This study conducted the risk assessment in the high-rise buildings, so based on the case study 
projects, a typical Work Breakdown Structure was developed. The WBS divided the projects into five 
main categories, which include earthwork, structure, finishing, mechanical, and electrical. Accordingly, 
a spreadsheet with a list of related risks was created for each task. Through an interview, experts were 
asked to choose the critical risks for each task based on their experience in order to conduct a qualitative 
risk assessment. Additionally, they were then asked to estimate the likelihood and impact of the chosen 
risk factors. The risk factors are used to conduct quantitative risk assessment after determining each 
risk factor's probability and impact. The risk propagation begins with the assignment of risk factors to 
each activity schedule, allowing for the subsequent conduct of quantitative risk assessment. Finally, the 
project risk score in terms of time and cost was then calculated using a Monte Carlo simulation. Figure 
1 shows the methodology used in this investigation. 

Create WBS Risk Identification

Expert Judgment 

Qualitative risk 
assesment

Develop project 
schedule

Quantitative risk 
assessment

 

Figure 1. Adopted Method 

Qualitative Risk Analysis   

The qualitative risk analysis was performed to determine risk probability and impact. For each task, 
a list of risk factors was established by reviewing various studies related to construction projects, and it 
was organized in a spreadsheet. The experts were interviewed to identify the critical risk factors along 
with their probability and impact. The experts were selected based on their experience in high-rise 
buildings, with each having more than 10 years of experience. The experts were asked to select a risk 
factor for each task and estimate the probability and impact by choosing one of the following options: 
very low, low, medium, high, or very high. Before conducting a quantitative risk assessment, the data 
were converted to a scale referenced in PMBOK, with probability and impact expressed as percentages, 
as shown in Table 2 [18] .  

Table 1. Probability and Impact Scale 

 

 

 

 

 

 

 

 

Probability  % Probability Impact % Impact 

Very high 90% Critical 80% 

High 80% Serious  40% 

Medium  50% Moderate  20% 

Low 30%  Minor  10% 

Very low 10% Negligible 5% 
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Case Study Selection 

The case study projects were selected based on the availability of the project schedule and 
estimated costs. The risk factors assigned to the project schedule were analyzed using Risky Project 
Professional, and a Monte Carlo simulation was performed. The results for each expert and each project 
were compiled to determine the project cost score and duration score. 

This study selected four projects that are already under construction. The first project consists of 
a 20-story tower. The original duration is estimated to be 1,073 days, with an original cost of 
$15,053,415. The second project involves four towers, each consisting of 40 stories, with an original 
duration of 988 days and an original cost of $81,868,876. The third project comprises 12 towers, each 
towers have 20 stories, and it is decided to construct in two different phases with an original duration of 
2,132 days and an original cost of $249,506,228. The fourth project includes 9 towers, with an original 
duration of 1,174 days and an original cost of $151,665,040. 

Quantitative Risk Analysis  

The next step is a quantitative risk assessment. When the risk factors are assigned to the activities 
in the project schedule, the qualitative risk analysis can be converted into a quantitative risk analysis. 
The Monte Carlo simulation was applied to four case study projects. Risky Project Professional version 
7.2 is used for applying the Monte Carlo simulation to each project, and as a result, three different 
durations and costs can be identified. For duration, the results will indicate low duration, base duration, 
and high duration; for cost, the findings will show low cost, base cost, and high cost. 

Model Development 

The final goal of this study is to develop a model that will assist project managers in predicting 
project duration and cost while considering risks. The Monte Carlo results for each project and each 
expert will have three different levels: low, base, and high. The mean score can be calculated using the 
arithmetic mean for each set of data, which includes the duration at low risk, base risk, and high risk, 
as well as the project cost at low, base, and high risk. The model can be developed using a non-linear 
regression technique called power regression, which is based on the following equation[48, 49]: 

𝑌 = 𝑎 ∗ 𝑋𝑏                                                                                    (1) 

While Y is the dependent variable, X is the independent variable, and a and b are constant values. 

 Finally, the regression model will be developed using SPSS and validated using Leave-One-
Project-Out Cross-Validation (LOPOCV). This will involve calculating the Mean Absolute Percentage 
Error (MAPE) [50], as shown in Equation 2. 

MAPE= 
1

𝑛
∑ |

𝐴𝑐𝑡𝑢𝑎𝑙(𝑖)−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (𝑖)

𝐴𝑐𝑡𝑢𝑎𝑙 (𝑖)
| ∗ 100

𝑛

𝑖=0 
                             (2) 

 

 

Result and Discussion  

The main goal of this study is to convert the risk factors into value in order to help project managers 
estimate the cost and duration of projects while considering the impact of risks. The process begins 
with developing a Work Breakdown Structure (WBS) and identifying risk factors. Then, expert engineers 
were asked to select the critical risks associated with each task, estimating both the probability and 
impact of these risks. The WBS, along with the response from one of the randomly selected experts, is 
shown in Table 2.  
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Table 2. Work Breakdown Structure (WBS) and Expert Response. 

Typical Tower Work Breakdown Structure  

WBS 
Code 

Task Name Risk factor Probability Impact 

1.1 Earth Work       

1.1.1 Excavation Design changes, Medium Moderate 

1.1.2 Pile Excavation Low productivity of equipment,  Medium Moderate 

1.1.3 Back Filling Site obstacles (access, existing services, size of 
the location...etc), 

Medium Minor 

1.2 Structure       

1.2.1 Pile Difficulty during concrete pouring Low Minor 

1.2.2 Foundation Delay in supplying materials (Concrete, steel) High Moderate 

1.2.3 Column And Shear Wall Delay in supplying materials (Concrete, steel) Low Moderate 

1.2.4 Slab Low productivity of labour, Medium Moderate 

1.3 Finishing       

1.3.1 Lightweight Concrete 
Block 

Low productivity of labour Medium Minor 

1.3.2 Sand Cement Plaster Low productivity of labour Medium Minor 

1.3.3 Gypsum Plaster Low productivity of labour Medium Moderate 

1.3.4 Screeding Low productivity of labour Medium Minor 

1.3.5 Tile Material delivery Low Minor 

1.3.6 Gypsum Board False 
Ceiling 

Low productivity of labour Low Minor 

1.3.7 Interior Walls And Ceiling 
Paint 

None Very Low Negligible 

1.3.8 Façade Cement Plastering Low productivity of labour Medium Minor 

1.3.9 Aluminum Windows And 
Doors 

Material delivery Medium Moderate 

1.3.10 Façade Natural Stone Low productivity of labour Medium Moderate 

1.3.11 Balcony Glass Balustrade Material delivery Medium Minor 

1.3.12 Door Material delivery High Moderate 

1.3.13 Kitchen Cabinet Amed Material delivery Medium Moderate 

1.3.14 Parquet Material delivery Low Minor 

1.3.15 Landscape Low productivity of labour Medium Minor 

1.3.16 Podium Cladding Low productivity of labour Medium Moderate 

1.3.17 Podium Aluminum Stick 
Façade 

Low productivity of labor Medium Minor 

1.3.18 Car Park Painting None Very Low Negligible 

1.4 Electrical       

1.4.1 Inside Building Design changes, Medium Serious 

1.4.2 Low Current System Low Productivity of labor Medium Minor 

1.4.3 Electrical Substation Delay in supplying materials Medium Minor 

1.4.4 (Busbar, Db & Transformer 
) 

Delay in supplying materials Medium Moderate 

1.4.5 Facade Lighting Unpredicted technical problems during 
construction 

Medium Minor 

1.4.6 Electrical Works On 
Basements 

None Very Low Negligible 

1.5 Mechanical       

1.5.1 Plumbing None Very Low Negligible 

1.5.2 Firefighting Design changes, Low Minor 

1.5.3 Ventilation Work None Very Low Negligible 

1.5.4 Hvac Delay in supplying materials Medium Minor 

1.5.5 Lpg Site obstacles (access, existing services, size of 
the location...etc) 

Low Minor 

1.5.6 Elevator Delay in supplying materials Low Minor 

1.5.7 Lavatory None Very Low Negligible 

1.5.8 Firefighting (Basement) None Very Low Negligible 

1.5.9 Sewage Treatment Plant None Very Low Negligible 

1.5.10 Garbage Chute Unpredicted technical problems during 
construction 

Low Minor 

1.5.11 Grp Tank Unpredicted technical problems during 
construction 

Very Low Minor 

1.5.12 Booster & Submersible 
Pumps 

None Very Low Negligible 

1.5.13 Firefighting Pump None Very Low Negligible 

1.5.14 Car Park Ventilation None Very Low Negligible 
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The quantitative risk assessment result can be determined by assigning risk factors to each task 
in the four case study projects. Additionally, a distinct Monte Carlo simulation was carried out for every 
project and expert's outcome. Tables 3, 4, 5, and 6 display the Mont Carlo simulation results, which 
include the low duration, base duration, high duration, low cost, base cost, and high cost. Equations 2 
and 3 were used to compare the modified values to the original data to calculate the project risk score: 

Duration Risk Score = Project Duration with Risk / Original Project Duration                  (2) 

Cost Risk Score = Project Cost with Risk / Original Project Cost                                          (3) 

 

Table 3. Monte Carlo Simulation Results for the First Case Study Project. 

Respond 
No. 

Low 
Duration 
(Day) 

Base 
Duration 
(Day) 

High 
Duration 
(Day) 

Low 
Duration 
Score  

Base 
Duration 
Score 

High 
Duration 
Score 

Low Cost 
($) 

Base 
Cost ($) 

High Cost  
($) 

Low 
Cost 
Score 

Base 
Cost 
Score 

High 
Cost 
Score 

R1 1097 1170 1242        1.02         1.09         1.16  15843688 17237592 18601557 1.05 1.15 1.24 

R2 1099 1177 1254        1.02         1.10         1.17  15218191 16104062 16886357 1.01 1.07 1.12 

R3 1176 1290 1383        1.10         1.20         1.29  15937567 16734702 17766593 1.06 1.11 1.18 

R4 1193 1295 1399        1.11         1.21         1.30  15897514 16870987 17827544 1.06 1.12 1.18 

R5 1225 1274 1323        1.14         1.19         1.23  17097767 17771308 18383151 1.14 1.18 1.22 

R6 1320 1406 1466        1.23         1.31         1.37  16539494 17318071 17979624 1.10 1.15 1.19 

R7 1174 1294 1419        1.09         1.21         1.32  16348275 18354704 20398542 1.09 1.22 1.36 

R8 1073 1112 1137        1.00         1.04         1.06  15205652 15487765 15801336 1.01 1.03 1.05 

R9 1225 1384 1515        1.14         1.29         1.41  16412151 17018068 17616640 1.09 1.13 1.17 

R10 1190 1293 1398        1.11         1.21         1.30  16012864 17081710 18254379 1.06 1.13 1.21 

R11 1196 1247 1295        1.11         1.16         1.21  15814119 16484389 17239855 1.05 1.10 1.15 

R12 1168 1220 1265        1.09         1.14         1.18  15842848 16226114 16610957 1.05 1.08 1.10 

R13 1144 1244 1329        1.07         1.16         1.24  16026675 17088831 18153569 1.06 1.14 1.21 

R14 1330 1440 1557        1.24         1.34         1.45  17627058 19376814 21200928 1.17 1.29 1.41 

R15 1223 1294 1350        1.14         1.21         1.26  18499852 18878539 19598998 1.23 1.25 1.30 

 

 

Table 4. Monte Carlo Simulation Results for the Second Case Study Project. 

Respond 
No. 

Low 
Duration 
(Day) 

Base 
Duration 
(Day) 

High 
Duration 
(Day) 

Low 
Duration 
Score  

Base 
Duration 
Score 

High 
Duration 
Score 

Low Cost 
($) 

Base 
Cost ($) 

High Cost  
($) 

Low 
Cost 
Score 

Base 
Cost 
Score 

High 
Cost 
Score 

R1 988 1094 1204        1.00         1.11         1.22  84539860 89145613 93872334 1.03 1.09 1.15 

R2 988 1062 1135        1.00         1.07         1.15  88351201 88351201 94143516 1.07 1.07 1.14 

R3 1019 1216 1321        1.03         1.23         1.34  87812777 92078388 96162982 1.07 1.12 1.17 

R4 1031 1139 1246        1.04         1.15         1.26  87872562 94760083 101393478 1.07 1.16 1.24 

R5 1123 1187 1249        1.14         1.20         1.26  91705304 96756526 101470925 1.12 1.18 1.24 

R6 989 1051 1082        1.00         1.06         1.10  86507149 91713751 95989661 1.06 1.12 1.17 

R7 1060 1224 1430        1.07         1.24         1.45  90400628 98012981 106310312 1.10 1.20 1.30 

R8 989 1051 1115        1.00         1.06         1.13  83217707 85467445 87644036 1.02 1.04 1.07 

R9 1132 1253 1435        1.15         1.27         1.45  91363737 95577581 99508043 1.12 1.17 1.22 

R10 1000 1116 1211        1.01         1.13         1.23  88214081 94668019 101752791 1.08 1.16 1.24 

R11 1000 1090 1167        1.01         1.10         1.18  84458388 90437236 96272271 1.03 1.10 1.18 

R12 1060 1145 1211        1.07         1.16         1.23  88965618 92717203 96066822 1.09 1.13 1.17 

R13 1007 1119 1202        1.02         1.13         1.22  84660680 88956092 93732117 1.03 1.09 1.14 

R14 1031 1251 1494        1.04         1.27         1.51  87575285 97360988 107438131 1.07 1.19 1.31 

R15 994 1178 1270        1.01         1.19         1.29  85796815 92807608 98166489 1.05 1.13 1.20 
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Table 5. Monte Carlo simulation results for the third case study project. 

Respon
d No. 

Low 
Duration 
(Day) 

Base 
Duration 
(Day) 

High 
Duration 
(Day) 

Low 
Duration 
Score  

Base 
Duration 
Score 

High 
Duration 
Score 

Low Cost 
($) 

Base Cost 
($) 

High Cost  
($) 

Low 
Cost 
Scor
e 

Base 
Cost 
Scor
e 

High 
Cost 
Scor
e 

R1 2132 2418 2681        1.00         1.13         1.26  257398054 271435091 285852760 1.03 1.09 1.15 

R2 2146 2310 2492        1.01         1.08         1.17  252193149 268494033 287254992 1.01 1.08 1.15 

R3 2269 2497 2696        1.06         1.17         1.26  267076225 280352408 292835842 1.07 1.12 1.17 

R4 2198 2517 2856        1.03         1.18         1.34  266557119 288880800 310146681 1.07 1.16 1.24 

R5 2344 2540 2692        1.10         1.19         1.26  279004388 294168054 308332714 1.12 1.18 1.24 

R6 2156 2334 2415        1.01         1.09         1.13  263427242 279780700 293417509 1.06 1.12 1.18 

R7 2228 2653 3112        1.05         1.24         1.46  274462870 297845541 323741096 1.10 1.19 1.30 

R8 2138 2237 2324        1.00         1.05         1.09  253524790 260344977 267007917 1.02 1.04 1.07 

R9 2276 2478 2706        1.07         1.16         1.27  277992050 290741135 302476619 1.11 1.17 1.21 

R10 2192 2520 2849        1.03         1.18         1.34  269607809 289379870 311538641 1.08 1.16 1.25 

R11 2182 2377 2616        1.02         1.11         1.23  256916512 275242963 293068833 1.03 1.10 1.17 

R12 2240 2335 2426        1.05         1.10         1.14  271432624 283429972 293150453 1.09 1.14 1.17 

R13 2182 2389 2577        1.02         1.12         1.21  257543353 270804775 285294635 1.03 1.09 1.14 

R14 2223 2571 3188        1.04         1.21         1.50  265861900 301150627 333856130 1.07 1.21 1.34 

R15 2176 2693 2938        1.02         1.26         1.38  261295001 281772316 297308102 1.05 1.13 1.19 

Table 6. Monte Carlo Simulation Results for the Fourth Case Study Project. 

Respond 
No. 

Low 
Duration 
(Day) 

Base 
Duration 
(Day) 

High 
Duration 
(Day) 

Low 
Duration 
Score  

Base 
Duration 
Score 

High 
Duration 
Score 

Low Cost 
($) 

Base Cost 
($) 

High Cost  
($) 

Low 
Cost 
Score 

Base 
Cost 
Score 

High 
Cost 
Score 

R1 1174 1271 1406        1.00         1.08         1.20  155715470 166976313 180652731 1.03 1.10 1.19 

R2 1174 1274 1336        1.00         1.09         1.14  153817184 164966764 175375051 1.01 1.09 1.16 

R3 1243 1406 1522        1.06         1.20         1.30  163506400 172124164 180630683 1.08 1.13 1.19 

R4 1204 1298 1392        1.03         1.11         1.19  162190745 173318510 186854989 1.07 1.14 1.23 

R5 1294 1385 1470        1.10         1.18         1.25  168643106 178110009 187078843 1.11 1.17 1.23 

R6 1174 1216 1249        1.00         1.04         1.06  159193791 166640028 173741426 1.05 1.10 1.15 

R7 1255 1408 1567        1.07         1.20         1.33  164491886 182928590 201540615 1.08 1.21 1.33 

R8 1205 1236 1269        1.03         1.05         1.08  153715041 157640666 161727038 1.01 1.04 1.07 

R9 1313 1388 1449        1.12         1.18         1.23  165328513 171946970 179888925 1.09 1.13 1.19 

R10 1241 1352 1509        1.06         1.15         1.29  160507415 174905066 188392789 1.06 1.15 1.24 

R11 1205 1289 1388        1.03         1.10         1.18  157339647 166194654 175061311 1.04 1.10 1.15 

R12 1255 1288 1311        1.07         1.10         1.12  162663519 168084714 173266813 1.07 1.11 1.14 

R13 1213 1321 1419        1.03         1.13         1.21  159142853 168478613 179246430 1.05 1.11 1.18 

R14 1255 1480 1608        1.07         1.26         1.37  173487603 192082715 209382852 1.14 1.27 1.38 

R15 1234 1394 1475        1.05         1.19         1.26  158311050 177219539 188057855 1.04 1.17 1.24 

The results of the Monte Carlo simulation can be used to determine the overall project risk impact 
in terms of cost and duration. Based on the arithmetic average of each scenario, the low-risk project 
duration score will be 1.06. A project with base risk will receive a duration score of 1.16, while the worst-
case scenario with high risk will receive a score of 1.25. Using the same formula to assess costs, the 
average scores for low-cost risk, base-cost risk, and high-cost risk are 1.07, 1.13, and 1.20, 
respectively. 

The study employed regression analysis to create a formula that aids estimators and project 
managers in project duration and cost estimation. The model was developed by analyzing the Monte 
Carlo results of fifteen experts from four different projects using SPSS 27. To increase estimation 
accuracy, this study employed regression analysis to determine a relationship between baseline 
estimates and risk-adjusted outcomes. The dataset consisted of 180 observations from Monte Carlo 
simulations (15 experts across 4 projects). The regression results are shown in Tables 7 and 8. In the 
duration-based analysis, the quadratic and cubic models exhibit the highest R-squared values. The 
power and linear models also show high R-squared values. However, since the project score is 
calculated by multiplying the probability by the impact and connecting it to the initial duration, the power 
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model, which yields the highest R-squared value for cost, will be the most useful. The following is the 
formula for this relationship: 

Duration with risks = constant * (Original Duration)b1 

Cost with risks = constant * (Original Cost)b1 

Specifically, the equation can be expressed as: 

Duration with risks = 1.301 * (Original Duration)0.983              (4) 

Cost with risks = 1.211 * (Original Cost)0.996                              (5) 

Table 7. Model Summary and Parameter Estimates for Duration 

Dependent Variable:   Duration with risk   

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. Constant b1 b2 b3 

Linear .910 1805.259 1 178 .000 21.877 1.140   

Logarithmic .905 1698.532 1 178 .000 -10831.349 1731.647   

Inverse .891 1449.653 1 178 .000 3587.415 -2491311.753   

Quadratic .911 901.071 2 177 .000 349.513 .678 .000  

Cubic .911 901.272 2 177 .000 272.444 .866 .000 3.481E-8 

Compound .905 1695.755 1 178 .000 618.899 1.001   

Power .906 1718.121 1 178 .000 1.301 .983   

S .899 1587.236 1 178 .000 8.454 -1420.350   

Growth .905 1695.755 1 178 .000 6.428 .001   

Exponential .905 1695.755 1 178 .000 618.899 .001   

Logistic .905 1695.755 1 178 .000 .002 .999   

The independent variable is Original Duration. 

Table 8. Model Summary and Parameter Estimates for Cost 

Dependent Variable:   Cost with risk   

Equation 

Model Summary Parameter Estimates 

R Square F df1 df2 Sig. Constant b1 b2 b3 

Linear .986 12941.906 1 178 .000 234876.346 1.130   

Logarithmic .849 1004.671 1 178 .000 -1426074884.565 85960193.056   

Inverse .630 302.573 1 178 .000 209197559.676 -3057201093330093.500 

  

Quadratic .986 6435.300 2 177 .000 34666.027 1.135 -1.930E-11  

Cubic .986 4266.976 3 176 .000 431760.370 1.112 2.224E-10 -6.180E-19 

Compound .858 1074.037 1 178 .000 22957792.340 1.000   

Power .996 42780.263 1 178 .000 1.211 .996   

S .926 2216.442 1 178 .000 19.240 -39682050.580   

Growth .858 1074.037 1 178 .000 16.949 1.128E-8   

Exponential .858 1074.037 1 178 .000 22957792.340 1.128E-8   

Logistic .858 1074.037 1 178 .000 4.356E-8 1.000   

The independent variable is Original Cost. 

 

Different models were developed for the low, base, and high-risk project duration and cost 
scenarios in order to improve the power regression models' dependability. LOPOCV was used to 
assess the robustness and generalizability of the model by progressively eliminating each project from 
the calibration dataset and generating independent predictions. The validation results, which show each 
model's excellent predictive performance, are shown in Table 9. 
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Table 9. Leave-One-Project-Out Cross-Validation and MAPE Result 

  

  
Model 
Summary 

Parameter 
Estimates     

Test Project R Square Constant b1 %Error %MAPE 

Low duration  

A 0.989 1.114 0.990 6.10% 

5.09% 
B 0.974 1.759 0.930 5.89% 

C 0.645 0.847 1.033 5.33% 

D  0.976 1.428 0.958 3.03% 

Base 
duration  

A 0.973 1.133 1.002 5.95% 

5.96% 
B 0.961 1.327 0.981 5.23% 

C 0.496 2.677 0.880 7.37% 

D  0.969 1.353 0.979 5.27% 

High duration  

A 0.938 1.075 1.020 6.36% 

9.85% 
B 0.936 1.007 1.029 7.58% 

C 0.300 6.725 0.758 18.36% 

D  0.941 1.232 1.003 7.11% 

Low Cost  

A 0.995 1.159 0.995 2.68% 

2.58% 
B 0.999 1.207 0.993 2.35% 

C 0.998 1.222 0.993 2.64% 

D  0.999 1.202 0.994 2.63% 

Base Cost  

A 0.992 1.110 1.001 4.27% 

3.62% 
B 0.998 1.201 0.997 3.26% 

C 0.998 1.207 0.997 3.42% 

D  0.998 1.208 0.996 3.56% 

High Cost  

A 0.985 1.155 1.002 5.67% 

4.84% 
B 0.997 1.228 0.999 4.39% 

C 0.996 1.220 0.999 4.50% 

D  0.997 1.241 0.998 4.79% 

All of the data was subjected to the LOPOCV, and the percentage error was computed 
independently to verify the validation. Lastly, each formula's percentage MAPE was calculated. The 
minimum percentage error for the project duration prediction formula that takes low-risk events into 
account is 3.03%. When Project D, the fourth project, was excluded, this data was acquired. 
Furthermore, this formula's % MAPE of 5.09% shows excellent prediction because it is less than 10%. 
Based on this outcome, the following model will be created to forecast project duration while taking low-
risk occurrence and impact into account: 

 

Duration with Low Risks = 1.384 * (Original Duration)0.962                        (6) 

The study discovered that there is significant variation between projects in the base risk duration 
prediction model's %MAPE analysis. Project B (5.23%) and Project C (7.37%) had the lowest and 
highest deviations, respectively. Nonetheless, the average %MAPE of 5.96% shows that the model can 
make accurate predictions for projects with base-level risks and is within acceptable prediction bounds 
of less than10%. Accordingly, the predictive relationship for estimating project duration under base-risk 
conditions is expressed as: 

Duration with Base Risks = 1.281 * (Original Duration)0.986                      (7) 

The predictive variability was higher for the high-risk duration model, as evidenced by calibration. 
The least erroneous result was 6.36% with the exclusion of Project A, whereas excluding Project C 
resulted in maximum error (18.36%), showing that when risk is very high, error compliance increases. 
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However, the average %MAPE of 9.85% remains below the 10% guideline, and thus it indicates that 
the model can still give somewhat accurate duration estimates under relatively high-risk conditions. 
The predictive formula is given as 

Duration with High Risks = 1.14 * (Original Duration)1.013                    (8) 

In terms of the low-risk cost prediction model, there is strong evidence by both %MAPE and R² in 
favour of robust performance. The R² values are between 0.995 and 0.999 meaning that almost all 
variation in project cost is explained by the model. The lowest percentage error was in project B 
(2.35%) and the highest was in project A (2.68%). On the whole, with percent mean absolute 
percentage error of 2.58%, the study found a very good prediction accuracy, indicating that this MA 
model is suitable to estimate costs in low-risk environment. The model is expressed as: 

Cost with Low Risks = 1.206 * (Original Cost)0.993                             (9) 

The base-risk cost prediction model also demonstrates strong predictive capability. R² values 
range from 0.992 to 0.998, indicating excellent goodness of fit. The minimum error occurred when 
Project B was excluded (3.26%), while the maximum error was observed for Project A (4.27%). Despite 
this variation, the overall %MAPE of 3.62% confirms that the model remains highly accurate and well 
within the 10% acceptability threshold. The predictive formula is as follows: 

Cost with Base Risks = 1.200 * (Original Cost)0.997                        (10) 

Evaluation of the high-risk cost prediction model demonstrates strong statistical reliability, with R² 
values ranging between 0.985 and 0.997, indicating that the model successfully explains the vast 
majority of the variation in project cost, even under elevated risk conditions. The minimum percentage 
error was obtained when Project B was excluded, yielding a value of 4.39%, whereas the maximum 
deviation was observed for Project A, with an error of 5.67%. Despite the greater uncertainty associated 
with high-risk environments, the model achieved an overall %MAPE of 4.84%, reflecting excellent 
predictive accuracy and confirming its suitability for forecasting project cost under high-risk scenarios. 
Based on these results, the developed predictive relationship for estimating project cost considering 
high-risk occurrence and impact is expressed as follows: 

Cost with High Risks = 1.227 * (Original Cost)0.999                              (11) 

The power regression models demonstrated low prediction errors and high coefficients of 
determination in every scenario according to the LOPOCV validation results, demonstrating their 
robustness and dependability. As a result, power regression can be chosen as the ultimate modeling 
technique to forecast project duration and cost in low, base, and high risk scenarios.  

Conclusion  

Risk management is a crucial area in construction projects, as risks can significantly impact time, 
cost, quality, and safety. Nowadays, it is important to plan effectively in order to consider the risk factors 
that affect the project's main objectives. This study focuses on the impact of risk in terms of time and 
cost. This study developed a practical task-based risk scoring framework that employs qualitative expert 
assessment, Monte Carlo simulation, and regression analysis to determine the impact of risks on project 
cost and duration.  To this end, a two-stage method was employed to collect data using interviews of 
experts, which qualitatively extracted risk factors. A Monte Carlo analysis was also conducted to 
translate the risk impact and probability into an overall project risk contribution. A second detail of this 
study is that the risk factors were established for each task within the project, in accordance with the 
usual WBS assumption. The arithmetic mean of the Monte Carlo results showed that the project 
duration score with low risk will be 1.06, which is equivalent to a 6% increase in overall project duration. 
The project duration base risk score was equal to 1.16, and the project duration risk score with high risk 
was equal to 1.25. Based on this result, it can be concluded that when risk is not controlled, the project 
duration might be increased by 25% in the worst-case scenario. Conversely, the results indicated that 
the risk factors also contributed to cost overruns. The average scores were 1.07 for low-cost risk, 1.13 
for base cost risk, and 1.20 for high-cost risk. Finally, based on the data, the study started with 
qualitative analysis and then conducted quantitative risk assessment, which is used to effectively 
transform qualitative risk perceptions into measurable adjustment factors at the project level. Through 
a power regression model, various formulas were developed to predict the impact on project costs and 
duration. These formulas are designed to assist engineers in calculating project duration and costs 
while considering risks. Strong model stability and low error values were confirmed by Leave-One-
Person-Out Cross-Validation, demonstrating the predictive capability of the power regression models. 
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For preliminary planning and feasibility assessments, these predictive equations serve as a reliable 
decision-support tool. 
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