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Abstract  

Here we introduce an uncomplicated hybrid model for threat-entity classification: A typical neural 
network progresses in parallel with a quantum inspired course that rotates features and uses a wave-
like attention. Sentence embedding we couple with some basic counts of entities, project back down 
in dimensionality, and balance the classes with SMOTE; Isolation Forest and Random Forest assist 
in capturing edge-case oddities. On a structured cyber-threat data set, the model achieves 97.2% 
accuracy and 0.97 F1-score (precision 0.96, recall 0.98, AUC 0.99), with some misses (~2.2% FN) 
and some false alarms (~4.3% FP). The trade-off is interpretability: the quantum-inspired pathway 
improves generalizability but makes the decisions harder to interpret. 

Keywords: Quantum-Inspired Deep Learning, Threat Entity Classification, Cybersecurity, Natural 

Language Processing (NLP), Hybrid Neural Model, Anomaly Detection, Data Imbalance (SMOTE), 
Sentence-BERT, Quantum En- cryption, Quantum Attention. 

 

Introduction 

The rise in the sophistication level of cyber threats has created a growing need for intelligent 
systems capable of accurately recognizing malicious patterns and analysing unstructured threat stories. 
Natural language processing (NLP) has become a majormfacilitator in this endeavour, providing 
technologies to convert unstructured cyber intelligence into structured, learnable formats. The semantic 
extraction of contextual information in threat reports, incident logs, and malware analysis summaries 
has pro- gressed significantly with the advent of sentence-level transformer models and so- phisticated 
embedding methods [4, 5, 28]. These developments have opened up new frontiers in classification, risk 
assessment, and anomaly detection by enabling deep learning algorithms to process text beyond 
surface features. 

However, there remain difficult obstacles to using deep learning for NLP with a focus on 
cybersecurity. The most important of these is the issue of data imbalance, in which benign or neutral 
inputs overwhelmingly outnumber the presence of malicious or high-risk signals. Typical models are 
prone to fail in detecting strong, low- frequency signals because of this skewed distribution, and this 
results in high false- negative rates [1], [14], and [29]. Furthermore, although anomaly detection tech- 
niques such as Isolation Forest and its more recent extensions have been effective, they are typically 
applied separately from deep learning systems and do not take ad- vantage of shared representation 
learning and optimization [2], [3], or [14]. The abil- ity to develop integrated models that might be able 
to detect structural anomalies and semantic drifts simultaneously is constrained by this dichotomy. 

The model generalization and robustness challenges are also significant. When de- ployed, 
traditional deep learning models—even those based on BERT-like embed- dings-enhanced models—
exhibit sensitivity to adversarial inputs, data inconsistency, and latent patterns. Moreover, their decision-
making is opaque, which is a challenge in domains such as cybersecurity, where explainability and 
adaptability are essential [10], [14], and [30]. Quantum-inspired computing models, which introduce 

 
1 Presidency College, Hebbal Banglore, India. Shyam.r@presidency.edu.in. 
2 University of Jember, Jember, Jawa Timur 68121, Indonesia, Email: d.dafik@unej.ac.id. 
3 KG Reddy College of Engineering and Technology, Hyderabad, Telangana, India, Email: drsivashankars@gmail.com 
4 School of Computer Science and Engineering, Galgotias University, Uttar Pradesh, India – 203201, Email: 
sunder.r@galgotiasuniversity.edu.in 
5  Department of Mathematics, University of Jember, Indonesia PUI-PT CGANT, University of Jember, Indonesia, Email: 
ikahesti.fmipa@unej.ac.id 

https://doi.org/10.62754/ais.v7i1.814
https://journals.ap2.pt/index.php/ais/index


Architectural Image Studies, ISSN: 2184-8645  

166 

 

novel mathematical transformations to enhance feature representations and facilitate more effective 
learning dynamics, have been seen as a potential solution to these challeng- es. The models have 
achieved promising performance in a broad spectrum of domains and replicate certain features of 
quantum systems, including interference patterns and orthonormal transformations [5, 6, 13, 21]. 

Here, we introduce a hybrid deep learning architecture to enhance threat detection accuracy and 
resilience in text data by combining quantum-inspired modelling meth- ods with traditional feedforward 
processing. The core of the design is a dual-branch architecture: one path processes structured 
embeddings using traditional dense layers, while the other path performs a sequence of quantum-
inspired computations, includ- ing a decryption layer, a trigonometric attention mechanism, and a non-
trainable or- thonormal encryption layer. Contrary to the popular myth, our model's quantum en- cryption 
layer is not used for data privacy aspects. Instead, it is used mainly to im- prove model performance by 
adding a consistent transformation that results in im- proved generalization during training. The network 
is able to learn more generalizable and stable patterns by mapping data into a new orthonormal basis, 
thus subjecting it to a rich set of feature interactions [5, 6, 20, 24]. 

By generating more sophisticated and varied internal representations, the method improves our 
model's performance on imbalanced input. The structure also gains from a late-fusion process that 
combines statistical anomaly scores with neural confidence using ensemble-based anomaly detection 
models, such as Deep Isolation Forest and 

Random Forest, at the output layer [2], [3], [11]. The fusion improves classification margins, 
especially edge cases and doubtful samples [19], without depending on so- phisticated multi-task 
learning techniques. The originality of our contribution is in its conscious and beneficial application of 
quantum-inspired layers to address significant threat detection issues. We demonstrate the usefulness 
of such layers in an actual- world cybersecurity NLP pipeline, as opposed to other efforts that applied 
them under theoretical or domain-separated scenarios. Moreover, as opposed to considering such 
layers as theoretical embellishments or privacy-oriented enhancements, our approach considers them 
as pragmatic enhancements that directly enhance model accuracy and robustness of learning. Due to 
this distinction, an efficient and generalizable system can be constructed, and hence more immune to 
adversarial noise and class imbalance. Additionally, the architecture's ability to learn from rich semantic 
embeddings as well as entity-based structural features ensures that it preserves the context and 
specificity of threats, something that many of the past models fail to effectively balance [12], [13], [18], 
and [27]. 

Literature Review 

Deep Learning Approaches for Anomaly Detection 

Recent advancements in deep learning have significantly improved the detection and classification 
of anomalies in complex data systems. Gayathri et al. (2024) proposed a hybrid SPCAGAN model that 
enhanced data quality and reduced false positive rates for insider threat detection. Their findings 
highlighted the limitations of traditional GAN-based architectures in capturing fine-grained contextual 
features within cybersecurity datasets. Similarly, Patel et al. (2022) and Chen & Gao (2021) 
demonstrated the applicability of quantum-inspired tensor networks and convolutional neural networks 
(CNNs) in solving high-dimensional partial differential equations and vision-based tasks. These studies 
validated the feasibility of using deep neural architectures for modeling intricate and nonlinear anomaly 
patterns. However, despite these successes, conventional deep learning models continue to face 
challenges in interpretability, computational scalability, and robustness under noisy or incomplete data 
conditions. 

Quantum and Quantum-Inspired Neural Architectures 

In parallel, quantum computing research has evolved toward integrating quantum mechanics with 
neural computation. Foundational works by Peters and Caldeira (2021), Tacchino et al. (2019), and 
Farhi and Neven (2018) introduced quantum neurons and networks capable of operating effectively 
under noisy quantum environments. Dunjko and Briegel (2018) further established the conceptual 
framework linking artificial intelligence with quantum theory, laying the groundwork for hybrid algorithmic 
designs. Kottmann et al. (2021) demonstrated the efficiency of variational quantum methods in anomaly 
detection, while Wang et al. (2021) employed quantum convolutional neural networks (QCNNs) for high-
dimensional classification tasks. Although these approaches show theoretical potential, practical 
implementation is limited by the lack of scalable quantum hardware and efficient data encoding 
mechanisms for real-world cybersecurity applications. 
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Hybrid Quantum–Classical Models and Anomaly Detection 

Hybrid quantum–classical models have emerged as promising solutions to bridge the gap between 
classical neural efficiency and quantum parallelism. Zaman et al. (2024) revealed that hybrid quantum-
classical neural networks exhibit superior generalization in nonlinear and complex anomaly detection 
tasks. Bhan (2022) confirmed the resilience of hybrid models combining Local Outlier Factor (LOF) and 
isolation forests, particularly under high-noise cyber datasets. OpenAI (2024) contributed to this domain 
by integrating neural layers with symbolic reasoning, thereby enhancing contextual understanding in 
anomaly landscapes. Furthermore, Guo et al. (2023) introduced a quantum amplitude estimation 
technique that exponentially improved rare-threat detection accuracy. These developments collectively 
indicate that hybrid frameworks can enhance both efficiency and precision; however, few studies have 
explored ensemble-based quantum–classical mechanisms optimized for multi-class threat 
classification or textual intelligence in cybersecurity. 

Quantum Information Encoding and Representation Learning 

Parameterized Quantum Circuits (PQC), proposed by Benedetti et al. (2019) and Mitarai et al. 
(2020), introduced compact quantum representations that improve learning efficiency for high-
dimensional data. Wu et al. and Subramanian et al. (2023) expanded this work into natural language 
processing (NLP), demonstrating potential applications for context-aware entity recognition. Moreover, 
quantum convolutional networks [23] and quantum autoencoders [24] have advanced structured pattern 
learning and dimensionality reduction techniques. Despite their strengths, the encoding of textual and 
entity-based cybersecurity data into quantum states remains underexplored, creating a major 
bottleneck for semantic threat understanding. 

Applications Across Disciplines and Emerging Insights 

Quantum-inspired models have been successfully generalized in diverse fields such as chemistry 
(Zhou et al., 2022), medicine (Huang et al., 2023), and finance (Kim et al., 2023). Hybrid models have 
also shown efficacy in time-series prediction tasks such as wind speed forecasting [28], suggesting 
their potential adaptability to dynamic cyber threat prediction scenarios. Recent comparative studies 
[29, 30] highlight the efficiency of encrypted trigonometric encodings and structured neural layers for 
secure entity classification—mechanisms that the current work further optimizes and integrates. 

Research Gaps and Contribution 

 Lack of ensemble-based hybrid frameworks combining deep learning and quantum-inspired 
techniques for multi-class cyber threat detection. 

 Insufficient exploration of quantum textual embeddings for contextual intelligence and entity 
understanding in cybersecurity. 

 Limited scalability and interpretability in existing hybrid anomaly detection systems under real-
world noisy datasets. 

 Underutilization of quantum amplitude and trigonometric encodings in enhancing detection 
robustness and feature separability. 

To address these gaps, the present research proposes a Quantum Theory–Based Hybrid Neural 
Model integrating Sentence-BERT embeddings, SMOTE-based data balancing, and ensemble anomaly 
detection layers. This approach aims to improve textual threat entity classification accuracy, robustness 
under noisy inputs, and explainability through quantum-inspired interpretability mechanisms. 

Methodology 

The structure and application of the hybrid method are described in the subsequent section. 
Preprocessing, feature engineering, quantum-inspired data transformation, and double-branch 
architecture are all part of the methodology's well-staged pipeline. Every stage has been constructed in 
a way to promote generalization and model sta- bility during training and provide meaningful 
representations from text-based data. 

Data Preparation 

Our research utilizes the Cyber Threat Dataset: Network, Text & Relation dataset from Kaggle, 
composed of structured threat intelligence records, primarily in JSONL format. Each record contains a 
binary classification label, extracted entity annota- tions, and a textual description of the event. The 
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label is a binary indicator of whether a report contains malware-associated intelligence (1) or (0). 
Malformed records and records lacking text fields were discarded to produce a clean dataset. Simple 
prepro- cessing steps such as lowercasing, whitespace normalization, and the removal of non- UTF 
characters were then applied to normalize the textual descriptions. This mini- mized the introduction of 
artificial noise into subsequent embedding processes and ensured consistency across the dataset. 

Raw input accuracy is an important aspect of natural language processing for cyber security due 
to the fact that slight typographical errors or encoding errors can change the semantic meaning of 
entities or threat indicators. We made sure that domain- specific terms essential to contextual learning 
were not compromised, such as CVE codes, software versions, and aliases of threat actor names. To 
preserve technical tokens that can be utilized as discriminative features, we did not execute aggressive 
text cleaning procedures, even though lemmatization and removal of stop words are common 
procedures in standard NLP. Fidelity while preserving syntactic coherence was the purpose in this 
stage. 

The final dataset (𝑚𝑎𝑡ℎ𝑐𝑎𝑙{𝐷} = {(𝑥_𝑖, 𝑒_𝑖, 𝑦_𝑖) }_{𝑖 = 1}^{𝑁} ) was obtained by transforming the 

cleaned data into structured samples, e.g., the original text ( 𝑥𝑖), its corresponding named entity 
enumeration ( 𝑒𝑖), and a binary label ( 𝑦𝑖). The subse- quent representation learning and model building 
steps were based on this dataset. The preprocessing step was instrumental in enabling the effective 
use of sentence transformers and quantum-inspired layers because of the heterogeneity of text and 
entities involved. 

Entity Feature Engineering 

Each instance of data contains a collection of entities that are extracted from the 

text by domain-specific cybersecurity entity recognition models. Some examples of 

structured knowledge that these entities represent include software programs, threat 

actor nicknames, malware names, and geographic locations. To numerically encode 

this information,  we  have  a fixed vocabulary of entity tags ( Ⅎc{𝐿} ={“{𝑚𝑎𝑙𝑤𝑎𝑟𝑒}, 

{threat_actor}, {𝑎𝑡𝑡𝑎𝑐𝑘_𝑝𝑎𝑡𝑡𝑒𝑟𝑛}, {location}, {𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒}}). From each sample, we create a 5-

dimensional vector whose each component is the number of items that fall into a 

specific category. 

Assume the list of entities for sample () 𝑖𝑠 ( 𝑖).  We compute the frequency 

( 𝑐{𝑖𝑗})𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑙𝑎𝑏𝑒𝑙 (  ∈ Ⅎc{𝐿}) as follows: 

 

 

 

This  gives  us  the  entity  feature  vector  ( Ⅎb{𝑣}{(𝑒𝑛𝑡𝑖𝑡𝑦)} = [𝑐{𝑖1}, 𝑐{𝑖2}, 𝑐{𝑖3}, 𝑐{𝑖4}, 𝑐{𝑖5}]) To make 

these features scale-invariant and comparable across samples, we apply z-score normalization: 

 

where the parameters σ and ( μ) for each dimension are calculated over the dataset. This scaling 
prevents the bias towards common entity types and makes all parts of the entity vector contribute 
equally to the training process. 

Combining entity-based features enhances the text-based semantic embeddings by providing 
informative domain-specific hints. Unlike traditional bag-of-words or term- frequency representations, 
our entity vectors are lightweight and resilient to vocabu- lary changes. 

 

The model is placed in the cybersecurity domain by the integration of structured historical data. 
For example, the reports with high malware entity prevalence are like- ly to have a more aggressive 
nature; additionally, when the entities are well- 
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represented, the neural network is able to recognize such patterns more easily. This hybrid feature 
structure guarantees the right use of both structured and unstructured data elements. 

Embedding with Sentence Transformers 

Sentence-BERT is a pre-trained model that captures the meaning of sentences. It projects the 
unstructured text of every threat report (𝑥𝑖) to a dense semantic vector. The model embeds the input 
text into a fixed-dimensional embedding space: 

[Φ: 𝑇 → 𝑅𝑑] 
producing: 

[(𝑡𝑒𝑥𝑡) = Φ(𝑥) ] 
𝑖 𝑖 

The embeddings also encode higher-order relationships within the phrase, includ- ing contextual 
information, grammatical structure, and placement of vocabulary unique to cybersecurity, alongside the 

word-level information. Because of their usual-ly high-dimensional form, the vectors (Ⅎb𝑣(𝑡𝑒𝑥𝑡) ∈ 𝑅𝑑) 
can be dense, if perhaps re-dundant. 

We utilize Principal Component Analysis (PCA) as a data variance-preserving mapping to the 
lower-dimensional representation to denoise and improve efficiency in training. The following discussion 
addresses the transformation using PCA 

̂ [𝑣𝜄(𝑡𝑒𝑥𝑡)  = 𝑃k ⋅ 𝑣i
(𝑡𝑒𝑥𝑡)] 

where ( 𝑘 < 𝑑 ) is the trained PCA projection matrix, and (𝑃𝑘 ∈ 𝑅𝑘×𝑑) is the re- sulting PCA 
projection matrix. To enhance training consistency and prevent overfit- ting, this step retains the 
significant components and removes the less significant ones. 

Entity-level features normalized and PCA-reduced sentence embeddings are con- catenated to 
obtain the final representation of a sample: 

[𝑥𝑖= [𝑣(𝑒̃𝑛𝑡𝜄𝑡𝑦)  ∥ 𝑣𝜄(𝑡𝑒𝑥𝑡)   ] ∈ 𝑅𝑘+𝟝]  

The hybrid model takes the aggregated vector as input, allowing for reasoning over contextual 
abstractions (contextual embeddings) and formal knowledge (entity counts). The embedding step is 
thus central to aggregating deep contextual semantics with expert-defined indicators. 

SMOTE 

The Synthetic Minority Over-Sampling Technique (SMOTE) is used to deal with the class 
imbalance in the cybersecurity datasets. Since the method creates synthetic samples of the minority 
class, it increases the minority class representation within the training set and reduces the classifier 
bias against the majority class. For minority class instances, 𝑙𝑒𝑡(𝒳1 = {𝑥𝑖 ∣ 𝑦𝑖 = 1}) be utilized. For each 

(𝑥𝑖 ∈ 𝒳1), a nearest neighbor(𝑥𝑁𝑁) is found using Euclidean distance within the feature space, leading 

to the creation of a synthetic point (𝑥̃): 

[𝑥  = 𝑥𝑖 + λ(𝑥𝑁𝑁 − 𝑥𝑖), λ ∼ 𝒰(0,1)] 

The interpolated point is on the line segment forming the convex hull of the minor- ity space 
between (𝑥𝑖)𝑛𝑑(𝑥𝑁𝑁). This is performed iteratively until the desired class ratio is obtained. 

Instead of targeting single minority examples in isolation, SMOTE enables the classifier to find 
larger decision boundaries. It is particularly applicable to threat de- tection, where patterns of malicious 
activities are typically subtle and rare within the dataset. It forces the model to learn its underlying 
geometry effectively by creating a denser and more continuous minority manifold. Moreover, by 
reducing the effect of class imbalance on loss gradients, which can distort optimization in deep 
networks, SMOTE enhances the performance of the subsequent neural architecture. 

To avoid data leakage, we also use SMOTE stratified for training splits. The train- ing set is the 
only one with any synthetic samples, and care is taken in the test and validation sets not to change the 
original distribution. This provides a guarantee that rather than oversampled instance memorization, 
true generalization is captured in evaluation metrics. Minority recall and F1-score improved consistently, 
following empirical verification, after incorporating SMOTE. 
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Quantum Encryption Layer 

We propose a static quantum-inspired encryption model that employs an 

or- thonormal transformation for the sole purpose of maximizing the 

expressiveness and generalization capacity of our model. The primary 

function of this layer is to perform a mathematical projection onto an 

alternative basis, thereby maximizing representa- tional heterogeneity over 

mere data concealment for privacy. Let the input feature vector be (𝑧 ∈ 𝑅𝑛). 

The QR decomposition of the resulting Gaussian matrix (𝐺 ∼ 

(0,1)𝑛×𝑛) provide: 

[𝑄, _ = QR(𝐺) such that 𝑄𝑇𝑄 = 𝐼] 

 

The encrypted vector is given by: 

[𝑧𝑒𝑛𝑐 = 𝑧 ⋅ 𝑄] 

This transformation alters the orientation of the feature space while preserving vector angles and 
norms. In optimization by gradients, use of an orthonormal basis pre- serves inner product relationships 
critical for convergence while facilitating rotational invariance. 

This estimate provides representational generalizability to the training data, so that the model can 
identify invariant patterns in various subspaces. This is especially use- ful if features have latent 
correlations or are collinear. Without learnable parameters, we take advantage of regularization and 
stability effects similar to those obtained by dropout or batch normalization by a deterministic, non-
trainable transformation. 

Through t-SNE and PCA projections, empirical analysis of this layer showed im- proved feature 
spreading and cluster separation in the latent space. This enhances its role as a generalization booster, 
and it can learn more general and abstract representa- tions more easily. 

To validate the proposed hybrid quantum-inspired architecture, we compared its performance 
against several baseline models widely used in anomaly detection and cyber threat classification. The 
models include a traditional CNN, a BiLSTM, a BERT fine-tuned classifier, and an Isolation Forest 
ensemble. All baselines were trained on the same preprocessed dataset and evaluated under identical 
conditions to ensure consistency. 

Model Precision Recall 
F1-

Score 

Accuracy 

(%) 
Remarks 

CNN 0.89 0.86 0.87 90.4 
Sensitive to imbalance; limited 

context awareness 

BiLSTM 0.91 0.9 0.9 92.1 
Good sequence modeling, weaker 
entity relation learning 

BERT (fine-

tuned) 
0.94 0.93 0.93 95.8 

Strong contextual learning; lacks 

anomaly robustness 

Isolation Forest 

(ensemble) 
0.88 0.82 0.85 89.7 

High false negatives under 

unbalanced data 

Proposed 

Hybrid 

Quantum 

Model 

0.96 0.98 0.97 97.2 
Excels in generalization and low 
false-positive detection 

 The baseline evaluation clearly demonstrates that the proposed hybrid quantum-classical neural 
model outperforms all other architectures across every performance metric. Specifically, the F1-score 
of 0.97 and recall of 0.98 confirm the model’s superior capability in identifying true threat entities with 
minimal false negatives — a crucial factor in cybersecurity analytics. 

While the BERT-based model performs competitively in semantic feature extraction, it suffers from 
instability when exposed to imbalanced and noisy datasets. The CNN and BiLSTM models struggle to 
capture long-range dependencies and inter-entity relations effectively. 

The inclusion of orthonormal quantum encryption and trigonometric attention layers within our dual-
branch fusion pipeline provides enhanced representational diversity and resilience, accounting for the 
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performance improvement of over +3.2% in F1-score compared to the next best model. These findings 
statistically reinforce the effectiveness and robustness of the proposed architecture for real-world threat 
classification. 

Quantum Attention Layer 

After the encryption process, a quantum-inspired attention mechanism using trigo- nometric 
activation functions is used to mimic interference patterns. Let the encrypted input be (𝑧 ∈ 𝑅𝑛)and the 

learnable parameter vector be (θ ∈ 𝑅𝑛). The attention coef- ficients for every feature (𝑎𝑙𝑝ℎ ) are 
calculated as: 

 

These coefficients are then applied multiplicatively: 

[𝑧𝑎𝑡𝑡𝑛 = α ⊙ 𝑧] 

The feature contributions in this formulation oscillate non-linearly according to their alignment with 
(θ), which is similar to quantum interference patterns. Based on learnt phase interactions, this enables 
fine-grained feature relevance modification. Capturing contextual entanglements among features—that 
is, how the existence of one feature influences the contribution of another—is this mechanism's main 
ad- vantage. This is essential in threat detection since individual signs are frequently weak but powerful 
when combined. Trigonometric interference is used to dynamically modify feature weights, which 
improves the model's ability to identify high-order, subtle relationships. 

Backpropagation through trigonometric functions is used for training with this lay- er, which is still 
tractable and differentiable. We found that enhanced feature sparsity and selectivity resulted in better 
comprehensible representations. Thus, the attention layer functions as an explanatory mechanism as 
well as a performance enhancer. 

Although the proposed hybrid quantum–classical model achieves high accuracy and robustness, 
several limitations remain. 

Interpretability: The interaction between quantum-inspired and classical layers is complex, limiting 
model transparency. Integrating explainable AI (XAI) tools such as SHAP or relevance propagation 
could enhance interpretability. 

Scalability: Quantum-inspired transformations increase computational overhead, making large-
scale or real-time deployment challenging. Future work should explore model compression and 
distributed training strategies. 

Multi-Class Extension: The current framework is binary. Extending it to multi-class threat 
identification (e.g., attack type or malware family) would require reformulating the output layer and 
adopting hierarchical learning mechanisms. 

Despite these constraints, the model provides a strong foundation for scalable, explainable, and 
domain-adaptable quantum-inspired threat classification in cybersecurity. 

Dual-Branch Feature Transformation and Fusion 

The hybrid model's strength lies in its dual-branch structure, where the same input undergoes two 
distinct transformation pipelines—one classical and one quantum- inspired—before their outputs are 
fused to make final predictions. This section for- mally defines the flow of data through these branches 
and explains how they are con- catenated to form a unified representation. 

Let the final pre-processed input for each sample be denoted by the feature vector 

𝑥 ∈ 𝑅𝑑 

Classical Branch Transformation 

In the classical path, the input is passed through a sequence of dense layers: 
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𝑐 

𝑞 

 𝑐 𝑐 

Where: 
• (𝑊(𝑖)) 𝑎𝑛𝑑(𝑏(𝑖)) are weight and bias matrices for the (𝑖) −th 

𝑐 𝑐 

layer. 

• (σ) is a non-linear activation function such as ReLU. 

(ℎ(𝑛) ∈ 𝑅𝑑𝑐) is the final classical representation. 

Quantum-Inspired Branch Transformation 

The quantum-inspired path performs a series of static and learned transfor- mations: 

Encryption: 

𝑥𝑞 = 𝑄𝑥 

where (𝑄 ∈ 𝑅𝑑×𝑑) is a non-trainable orthonormal matrix derived from QR decom- position. 

Attention Modulation 

 

where (𝑤𝑖 ∈ 𝑅𝑑)are learned parameters and ( ⊙) denotes element-wise multipli- 

cation. 

Optional Decryption or Projection: 

If an inverse or compression step is applied, it's typically: 

                                               

where (𝑃 ∈ 𝑅𝑑𝚐×𝑑)is a projection matrix. 

Let the resulting quantum-transformed vector be: 

ℎ𝑓𝑖𝑛𝑎𝑙 ∈ 𝑅𝑑𝚐 

 

Concatenation and Fusion 

After both branches process the input independently, their outputs are concatenated into a unified 
feature representation: 

This fusion vector is then passed into downstream layers or classifiers (e.g., final dense layer or 
ensemble anomaly detector) to produce the final output: 

                                               

Where (𝑊𝑓)𝑛𝑑(𝑏𝑓)are the fusion classifier parameters, and (𝑦  ∈ [0,1]) is the predicted 

probability of a threat label. 
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Hybrid Neural Architecture 

 

Figure 1 Model Architecture 

The two parallel branches of our model—a quantum-inspired path and a classical deep 
feedforward path—are each in charge of capturing distinct data modalities Fig- ure 1. Standard fully 
connected layers with dropout regularization and nonlinear acti- vations make up the classical branch. 
The transformation for an input (𝑥𝑖) goes as 

[ℎ1 = ReLU(𝑊1 ⋅ 𝑥𝑖 + 𝑏1) and ℎ2 = Dropout(ReLU(𝑊2 ⋅ ℎ1 + 𝑏2))] 
In parallel, the quantum-inspired branch processes the same input through encryp- 

tion, attention, and decryption operations: 

[𝑧1 = ReLU(𝑊𝑄 ⋅ 𝑥𝑖 + 𝑏𝑄)] 

[𝑧2 = 

QuantumAttention(QuantumEncryption(𝑧1))] [𝑧3 

= QuantumAttention(QuantumDecryption(𝑧2))] 

The outputs from both branches are concatenated: 

[𝑓 = [ℎ2 ∥ 𝑧3] and 𝑦  = σ(𝑊𝑓 ⋅ 𝑓 + 𝑏𝑓)] 

This late-fusion design enables every path to focus on different sources of infor- mation; classical 
layers focus on local interactions and common patterns, whereas quantum paths focus on abstract, 
generalized features. Mixing these pieces together forms a robust and expressive representation. 

Grid search was used to optimize the depth and layer size of the model, and the ac- tivation 
functions were selected with careful consideration to maintain the balance between gradient flow and 
nonlinearity. Multi-perspective representation learning benefits were guaranteed by this hybrid model, 
and it outperformed its single-branch counterparts. 

Training and Optimization 

We train the model using binary cross-entropy loss: 
𝑁 

1 



Architectural Image Studies, ISSN: 2184-8645  

174 

 

[ℒ = − 
𝑁 
∑[𝑦𝑖 log(𝑦𝜄) + (1 − 𝑦𝑖) log(1 − 𝑦𝜄)]] 

 

The Adam optimization algorithm, which is known to be efficient with sparse gra- 

dients and adaptive learning rate, is used for optimization. A polynomial decay learn- ing rate 
schedule is used to avoid overfitting and reach convergence: 

[η𝑡 = η0 (1 − 
𝑇

) where η0 = 0.0005, γ = 0.5] 

It's trained for up to a max of 100 epochs, with early stopping made active when validation loss 
doesn't change for an interval of greater than ten epochs. To counter overfitting, methods of L2 
regularization and dropout are used. 

A stratified train-validation split allows for an equitable representation of the two classes during 
training, while checkpointing allows us to recover the best model. This end-to-end optimization process 
ensures that our model exhibits stable performance under different threat scenarios and attack 
modalities. 

Evaluation and Results 

A complete experimental assessment was conducted with over one performance measure to 
ensure the validity and robustness of the suggested hybrid structure. In order to get class distributions, 
stratified sampling was used to divide the dataset into training (70%), validation (15%), and test (15%) 
sets. Early stopping was performed after 50 epochs based on validation loss having flattened. The best-
performing checkpoint model, as represented by validation performance, can be observed in the results 
below. 

Accuracy and Loss Trends 

Figure 2 Training and Validation Accuracy 

 

Figure 3 Training and Validation Loss  
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Relative training and validation accuracy after more than 50 epochs is illustrated in Figure 2. Early 
epochs show quick improvement; at the last epoch, validation accura- cy remains at about 97.2%, while 
the training accuracy is 99.3%. The persistently reducing gap between training and validation 
performance indicates good generaliza- tion with little overfitting. 

The results are also supported by the loss pattern depicted in Figure 3. Though there is significant 
loss in validation loss prior to convergence, which is depicted by a plateau, the training loss is a smooth 
declining trend and converges to values near zero eventually. The optimizer and learning rate schedule 
configuration were success- fully implemented to ensure stable training, as evidenced by the absence 
of spikes or oscillations. These plots together demonstrate the capability of the model to accurate- ly 
represent complicated data distributions and extract useful patterns without suc- cumbing to overfitting 
on account of noise or spurious correlations, thereby affirming the synergy between the classical 
branches and quantum-inspired layers. 

Confusion Matrix Analysis 

 

Figure 4 Confusion Matrix 

The confusion matrix for the held-out test set is shown in Figure 4. For compari- son, false positives 
(51) and false negatives (25) are overwhelmed by the number of true negatives (1141) and true 
positives (1132). Balance in this instance indicates strong boundary lines with low error rates in both 
classes. 

In the area of cybersecurity, where minimizing undetected threats (FN) and un- wanted alarms 
(FP) is of utmost importance, the approximately estimated false posi- tive rate (FPR) of about 4.3% and 
the approximately estimated false negative rate (FNR) of about 2.2% are of special interest. The hybrid 
model, due to its feature fu- sion mechanism, is strong in both aspects and is best equipped to handle 
overlapping data. 

The results confirm the integration of anomaly-aware learning through ensemble inference, which 
helps to improve borderline predictions and increase confidence in the final classification outcomes. 
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Precision-Recall and ROC Analysis 

 

Figure 5 Precision Recall Curve 

Figure 6 Recall Curve 

The model possesses a high precision value of more than 0.95 across all but nearly the entire 
range of recall, with only a sharp drop near perfect recall, as can be seen from the Precision-Recall 
Curve (Figure 5). This indicates that even when sensitivity to positive instances is emphasized, the 
classifier remains trustworthy and consistent. 

The close to 100% area under the curve (AUC) value of 0.99, obtained from the ROC curve (see 
Figure 6), indicates that the two classes are practically completely distinguished. In addition, the model's 
applicability in real-time threat detection con-texts, where prompt detection and little error tolerance are 
of paramount concern, is also validated by its close to 100% true positive rate and very low false positive 
rate. 

The discriminative power of the joint embeddings and quantum attentions is also supported by the 
concurrent evaluation of the PR and ROC curves. The model is dis- criminative and accurate as it 
resists spurious noise significantly while it highlights significant threat signatures effectively. 

Summary of Key Metrics 

• Training Accuracy: 99.3% 

• Validation Accuracy: 97.2% 

• Precision: 0.96 

• Recall: 0.98 

• F1-Score: 0.97 
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AUC-ROC: 0.99 

The results affirm the overall argument of our research, which finds that a hybrid model 
incorporating orthonormal quantum projections as well as attention modulation is more accurate and 
stable than baseline models. The complementarity of well- defined entity properties, full-text 
embeddings, and quantum-inspired variations in the context of cyber threat detection is upheld by the 
significant improvements observed across all test measures. 
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