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Abstract

Here we introduce an uncomplicated hybrid model for threat-entity classification: A typical neural
network progresses in parallel with a quantum inspired course that rotates features and uses a wave-
like attention. Sentence embedding we couple with some basic counts of entities, project back down
in dimensionality, and balance the classes with SMOTE; Isolation Forest and Random Forest assist
in capturing edge-case oddities. On a structured cyber-threat data set, the model achieves 97.2%
accuracy and 0.97 F1-score (precision 0.96, recall 0.98, AUC 0.99), with some misses (~2.2% FN)
and some false alarms (~4.3% FP). The trade-off is interpretability: the quantum-inspired pathway
improves generalizability but makes the decisions harder to interpret.

Keywords: Quantum-inspired Deep Learning, Threat Entity Classification, Cybersecurity, Natural
Language Processing (NLP), Hybrid Neural Model, Anomaly Detection, Data Imbalance (SMOTE),
Sentence-BERT, Quantum En- cryption, Quantum Attention.

Introduction

The rise in the sophistication level of cyber threats has created a growing need for intelligent
systems capable of accurately recognizing malicious patterns and analysing unstructured threat stories.
Natural language processing (NLP) has become a majormfacilitator in this endeavour, providing
technologies to convert unstructured cyber intelligence into structured, learnable formats. The semantic
extraction of contextual information in threat reports, incident logs, and malware analysis summaries
has pro- gressed significantly with the advent of sentence-level transformer models and so- phisticated
embedding methods [4, 5, 28]. These developments have opened up new frontiers in classification, risk
assessment, and anomaly detection by enabling deep learning algorithms to process text beyond
surface features.

However, there remain difficult obstacles to using deep learning for NLP with a focus on
cybersecurity. The most important of these is the issue of data imbalance, in which benign or neutral
inputs overwhelmingly outnumber the presence of malicious or high-risk signals. Typical models are
prone to fail in detecting strong, low- frequency signals because of this skewed distribution, and this
results in high false- negative rates [1], [14], and [29]. Furthermore, although anomaly detection tech-
niques such as Isolation Forest and its more recent extensions have been effective, they are typically
applied separately from deep learning systems and do not take ad- vantage of shared representation
learning and optimization [2], [3], or [14]. The abil- ity to develop integrated models that might be able
to detect structural anomalies and semantic drifts simultaneously is constrained by this dichotomy.

The model generalization and robustness challenges are also significant. When de- ployed,
traditional deep learning models—even those based on BERT-like embed- dings-enhanced models—
exhibit sensitivity to adversarial inputs, data inconsistency, and latent patterns. Moreover, their decision-
making is opaque, which is a challenge in domains such as cybersecurity, where explainability and
adaptability are essential [10], [14], and [30]. Quantum-inspired computing models, which introduce
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novel mathematical transformations to enhance feature representations and facilitate more effective
learning dynamics, have been seen as a potential solution to these challeng- es. The models have
achieved promising performance in a broad spectrum of domains and replicate certain features of
quantum systems, including interference patterns and orthonormal transformations [5, 6, 13, 21].

Here, we introduce a hybrid deep learning architecture to enhance threat detection accuracy and
resilience in text data by combining quantum-inspired modelling meth- ods with traditional feedforward
processing. The core of the design is a dual-branch architecture: one path processes structured
embeddings using traditional dense layers, while the other path performs a sequence of quantum-
inspired computations, includ- ing a decryption layer, a trigopnometric attention mechanism, and a non-
trainable or- thonormal encryption layer. Contrary to the popular myth, our model's quantum en- cryption
layer is not used for data privacy aspects. Instead, it is used mainly to im- prove model performance by
adding a consistent transformation that results in im- proved generalization during training. The network
is able to learn more generalizable and stable patterns by mapping data into a new orthonormal basis,
thus subjecting it to a rich set of feature interactions [5, 6, 20, 24].

By generating more sophisticated and varied internal representations, the method improves our
model's performance on imbalanced input. The structure also gains from a late-fusion process that
combines statistical anomaly scores with neural confidence using ensemble-based anomaly detection
models, such as Deep Isolation Forest and

Random Forest, at the output layer [2], [3], [11]. The fusion improves classification margins,
especially edge cases and doubtful samples [19], without depending on so- phisticated multi-task
learning techniques. The originality of our contribution is in its conscious and beneficial application of
quantum-inspired layers to address significant threat detection issues. We demonstrate the usefulness
of such layers in an actual- world cybersecurity NLP pipeline, as opposed to other efforts that applied
them under theoretical or domain-separated scenarios. Moreover, as opposed to considering such
layers as theoretical embellishments or privacy-oriented enhancements, our approach considers them
as pragmatic enhancements that directly enhance model accuracy and robustness of learning. Due to
this distinction, an efficient and generalizable system can be constructed, and hence more immune to
adversarial noise and class imbalance. Additionally, the architecture's ability to learn from rich semantic
embeddings as well as entity-based structural features ensures that it preserves the context and
specificity of threats, something that many of the past models fail to effectively balance [12], [13], [18],
and [27].

Literature Review
Deep Learning Approaches for Anomaly Detection

Recent advancements in deep learning have significantly improved the detection and classification
of anomalies in complex data systems. Gayathri et al. (2024) proposed a hybrid SPCAGAN model that
enhanced data quality and reduced false positive rates for insider threat detection. Their findings
highlighted the limitations of traditional GAN-based architectures in capturing fine-grained contextual
features within cybersecurity datasets. Similarly, Patel et al. (2022) and Chen & Gao (2021)
demonstrated the applicability of quantum-inspired tensor networks and convolutional neural networks
(CNNss) in solving high-dimensional partial differential equations and vision-based tasks. These studies
validated the feasibility of using deep neural architectures for modeling intricate and nonlinear anomaly
patterns. However, despite these successes, conventional deep learning models continue to face
challenges in interpretability, computational scalability, and robustness under noisy or incomplete data
conditions.

Quantum and Quantum-inspired Neural Architectures

In parallel, quantum computing research has evolved toward integrating quantum mechanics with
neural computation. Foundational works by Peters and Caldeira (2021), Tacchino et al. (2019), and
Farhi and Neven (2018) introduced quantum neurons and networks capable of operating effectively
under noisy quantum environments. Dunjko and Briegel (2018) further established the conceptual
framework linking artificial intelligence with quantum theory, laying the groundwork for hybrid algorithmic
designs. Kottmann et al. (2021) demonstrated the efficiency of variational quantum methods in anomaly
detection, while Wang et al. (2021) employed quantum convolutional neural networks (QCNNSs) for high-
dimensional classification tasks. Although these approaches show theoretical potential, practical
implementation is limited by the lack of scalable quantum hardware and efficient data encoding
mechanisms for real-world cybersecurity applications.
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Hybrid Quantum—Classical Models and Anomaly Detection

Hybrid quantum—classical models have emerged as promising solutions to bridge the gap between
classical neural efficiency and quantum parallelism. Zaman et al. (2024) revealed that hybrid quantum-
classical neural networks exhibit superior generalization in nonlinear and complex anomaly detection
tasks. Bhan (2022) confirmed the resilience of hybrid models combining Local Outlier Factor (LOF) and
isolation forests, particularly under high-noise cyber datasets. OpenAl (2024) contributed to this domain
by integrating neural layers with symbolic reasoning, thereby enhancing contextual understanding in
anomaly landscapes. Furthermore, Guo et al. (2023) introduced a quantum amplitude estimation
technique that exponentially improved rare-threat detection accuracy. These developments collectively
indicate that hybrid frameworks can enhance both efficiency and precision; however, few studies have
explored ensemble-based quantum—classical mechanisms optimized for multi-class threat
classification or textual intelligence in cybersecurity.

Quantum Information Encoding and Representation Learning

Parameterized Quantum Circuits (PQC), proposed by Benedetti et al. (2019) and Mitarai et al.
(2020), introduced compact quantum representations that improve learning efficiency for high-
dimensional data. Wu et al. and Subramanian et al. (2023) expanded this work into natural language
processing (NLP), demonstrating potential applications for context-aware entity recognition. Moreover,
quantum convolutional networks [23] and quantum autoencoders [24] have advanced structured pattern
learning and dimensionality reduction techniques. Despite their strengths, the encoding of textual and
entity-based cybersecurity data into quantum states remains underexplored, creating a major
bottleneck for semantic threat understanding.

Applications Across Disciplines and Emerging Insights

Quantum-inspired models have been successfully generalized in diverse fields such as chemistry
(Zhou et al., 2022), medicine (Huang et al., 2023), and finance (Kim et al., 2023). Hybrid models have
also shown efficacy in time-series prediction tasks such as wind speed forecasting [28], suggesting
their potential adaptability to dynamic cyber threat prediction scenarios. Recent comparative studies
[29, 30] highlight the efficiency of encrypted trigonometric encodings and structured neural layers for
secure entity classification—mechanisms that the current work further optimizes and integrates.

Research Gaps and Contribution

Lack of ensemble-based hybrid frameworks combining deep learning and quantum-inspired
techniques for multi-class cyber threat detection.

Insufficient exploration of quantum textual embeddings for contextual intelligence and entity
understanding in cybersecurity.

Limited scalability and interpretability in existing hybrid anomaly detection systems under real-
world noisy datasets.

Underutilization of quantum amplitude and trigonometric encodings in enhancing detection
robustness and feature separability.

To address these gaps, the present research proposes a Quantum Theory—Based Hybrid Neural
Model integrating Sentence-BERT embeddings, SMOTE-based data balancing, and ensemble anomaly
detection layers. This approach aims to improve textual threat entity classification accuracy, robustness
under noisy inputs, and explainability through quantum-inspired interpretability mechanisms.

Methodology

The structure and application of the hybrid method are described in the subsequent section.
Preprocessing, feature engineering, quantum-inspired data transformation, and double-branch
architecture are all part of the methodology's well-staged pipeline. Every stage has been constructed in
a way to promote generalization and model sta- bility during training and provide meaningful
representations from text-based data.

Data Preparation

Our research utilizes the Cyber Threat Dataset: Network, Text & Relation dataset from Kaggle,
composed of structured threat intelligence records, primarily in JSONL format. Each record contains a
binary classification label, extracted entity annota- tions, and a textual description of the event. The
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label is a binary indicator of whether a report contains malware-associated intelligence (1) or (0).
Malformed records and records lacking text fields were discarded to produce a clean dataset. Simple
prepro- cessing steps such as lowercasing, whitespace normalization, and the removal of non- UTF
characters were then applied to normalize the textual descriptions. This mini- mized the introduction of
artificial noise into subsequent embedding processes and ensured consistency across the dataset.

Raw input accuracy is an important aspect of natural language processing for cyber security due
to the fact that slight typographical errors or encoding errors can change the semantic meaning of
entities or threat indicators. We made sure that domain- specific terms essential to contextual learning
were not compromised, such as CVE codes, software versions, and aliases of threat actor names. To
preserve technical tokens that can be utilized as discriminative features, we did not execute aggressive
text cleaning procedures, even though lemmatization and removal of stop words are common
procedures in standard NLP. Fidelity while preserving syntactic coherence was the purpose in this
stage.

The final dataset (mathcal{D} = {(x_i, e_i, y_i) } {i = 1}{N} ) was obtained by transforming the
cleaned data into structured samples, e.g., the original text ( xi), its corresponding named entity
enumeration ( ei), and a binary label ( yi). The subse- quent representation learning and model building
steps were based on this dataset. The preprocessing step was instrumental in enabling the effective
use of sentence transformers and quantum-inspired layers because of the heterogeneity of text and
entities involved.

Entity Feature Engineering

Each instance of data contains a collection of entities that are extracted from the
text by domain-specific cybersecurity entity recognition models. Some examples of
structured knowledge that these entities represent include software programs, threat
actor nicknames, malware names, and geographic locations. To numerically encode
this information, we have a fixed vocabulary of entity tags ( dc{L} ={“{malware},
{threat_actor}, {attack_pattern}, {location}, {software}}). From each sample, we create a 5-
dimensional vector whose each component is the number of items that fall into a
specific category.

Assume the list of entities for sample () is (i). We compute the frequency

(cgpfor each label ( € dc{L}) as follows:

e

[cij;:;;u el =¢;])

This gives us the entity feature vector (dAb{v}{entity)} = [cuy, cun, Cuzp Cpay Csy]) To make
these features scale-invariant and comparable across samples, we apply z-score normalization:
(entity)
[ﬁ{entit}r)_ o v; — M ]
i H 1 a
where the parameters ¢ and ( p) for each dimension are calculated over the dataset. This scaling
prevents the bias towards common entity types and makes all parts of the entity vector contribute
equally to the training process.

Combining entity-based features enhances the text-based semantic embeddings by providing
informative domain-specific hints. Unlike traditional bag-of-words or term- frequency representations,
our entity vectors are lightweight and resilient to vocabu- lary changes.

The model is placed in the cybersecurity domain by the integration of structured historical data.
For example, the reports with high malware entity prevalence are like- ly to have a more aggressive
nature; additionally, when the entities are well-
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represented, the neural network is able to recognize such patterns more easily. This hybrid feature
structure guarantees the right use of both structured and unstructured data elements.

Embedding with Sentence Transformers

Sentence-BERT is a pre-trained model that captures the meaning of sentences. It projects the
unstructured text of every threat report (xi) to a dense semantic vector. The model embeds the input
text into a fixed-dimensional embedding space:

[@:T - R

producing:
[(text) = (D(X)]
i 4

The embeddings also encode higher-order relationships within the phrase, includ- ing contextual
information, grammatical structure, and placement of vocabulary unique to cybersecurity, alongside the
word-level information. Because of their usual-ly high-dimensional form, the vectors (dbv(text) € Rd)
can be dense, if perhaps re-dundant.

We utilize Principal Component Analysis (PCA) as a data variance-preserving mapping to the
lower-dimensional representation to denoise and improve efficiency in training. The following discussion
addresses the transformation using PCA

"[vl(text) =Py vi(text)]

where ( k < d ) is the trained PCA projection matrix, and (Pk € Rkxd) is the re- sulting PCA
projection matrix. To enhance training consistency and prevent overfit- ting, this step retains the
significant components and removes the less significant ones.

Entity-level features normalized and PCA-reduced sentence embeddings are con- catenated to
obtain the final representation of a sample:

[xi= [vlentwy) || piltext) | € Rk*5]

The hybrid model takes the aggregated vector as input, allowing for reasoning over contextual
abstractions (contextual embeddings) and formal knowledge (entity counts). The embedding step is
thus central to aggregating deep contextual semantics with expert-defined indicators.

SMOTE

The Synthetic Minority Over-Sampling Technique (SMOTE) is used to deal with the class
imbalance in the cybersecurity datasets. Since the method creates synthetic samples of the minority
class, it increases the minority class representation within the training set and reduces the classifier
bias against the majority class. For minority class instances, let(X1 = {x: | y: = 1}) be utilized. For each
(x: € X'1), a nearest neighbor(xNN) is found using Euclidean distance within the feature space, leading
to the creation of a synthetic point (x):

[£=x; +Aeyw —x), A~UO1)

The interpolated point is on the line segment forming the convex hull of the minor- ity space
between (x:)nd(xnn). This is performed iteratively until the desired class ratio is obtained.

Instead of targeting single minority examples in isolation, SMOTE enables the classifier to find
larger decision boundaries. It is particularly applicable to threat de- tection, where patterns of malicious
activities are typically subtle and rare within the dataset. It forces the model to learn its underlying
geometry effectively by creating a denser and more continuous minority manifold. Moreover, by
reducing the effect of class imbalance on loss gradients, which can distort optimization in deep
networks, SMOTE enhances the performance of the subsequent neural architecture.

To avoid data leakage, we also use SMOTE stratified for training splits. The train- ing set is the
only one with any synthetic samples, and care is taken in the test and validation sets not to change the
original distribution. This provides a guarantee that rather than oversampled instance memorization,
true generalization is captured in evaluation metrics. Minority recall and F1-score improved consistently,
following empirical verification, after incorporating SMOTE.
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Quantum Encryption Layer

We propose a static quantum-inspired encryption model that employs an
or- thonormal transformation for the sole purpose of maximizing the
expressiveness and generalization capacity of our model. The primary
function of this layer is to perform a mathematical projection onto an
alternative basis, thereby maximizing representa- tional heterogeneity over
mere data concealment for privacy. Let the input feature vector be (z € R).
The QR decomposition of the resulting Gaussian matrix (G ~

(0,1)™") provide:
[Q,_=QR(G) suchthat QTQ =1]

The encrypted vector is given by:

[Zenc =z Q]

This transformation alters the orientation of the feature space while preserving vector angles and
norms. In optimization by gradients, use of an orthonormal basis pre- serves inner product relationships
critical for convergence while facilitating rotational invariance.

This estimate provides representational generalizability to the training data, so that the model can
identify invariant patterns in various subspaces. This is especially use- ful if features have latent
correlations or are collinear. Without learnable parameters, we take advantage of regularization and
stability effects similar to those obtained by dropout or batch normalization by a deterministic, non-
trainable transformation.

Through t-SNE and PCA projections, empirical analysis of this layer showed im- proved feature
spreading and cluster separation in the latent space. This enhances its role as a generalization booster,
and it can learn more general and abstract representa- tions more easily.

To validate the proposed hybrid quantum-inspired architecture, we compared its performance
against several baseline models widely used in anomaly detection and cyber threat classification. The
models include a traditional CNN, a BiLSTM, a BERT fine-tuned classifier, and an Isolation Forest
ensemble. All baselines were trained on the same preprocessed dataset and evaluated under identical
conditions to ensure consistency.

Model Precision | Recall F1- Accuracy Remarks
Score (%)
CNN 0.89 086 087 904 Sensitive to imbalance; limited
context awareness
BiLSTM 091 09 09 9.1 Gogd sequence moc_ielmg, weaker
entity relation learning
BERT (fine- 094 093 0.93 958 Strong contextual learning; lacks
tuned) anomaly robustness
Isolation Forest 088 082 085 89.7 High false negatives under
(ensemble) unbalanced data
Proposed
Hybrid 0.96 0.98 0.97 972 Excels in generahzapon and low
Quantum false-positive detection
Model

The baseline evaluation clearly demonstrates that the proposed hybrid quantum-classical neural
model outperforms all other architectures across every performance metric. Specifically, the F1-score
of 0.97 and recall of 0.98 confirm the model’s superior capability in identifying true threat entities with
minimal false negatives — a crucial factor in cybersecurity analytics.

While the BERT-based model performs competitively in semantic feature extraction, it suffers from
instability when exposed to imbalanced and noisy datasets. The CNN and BiLSTM models struggle to
capture long-range dependencies and inter-entity relations effectively.

The inclusion of orthonormal quantum encryption and trigonometric attention layers within our dual-
branch fusion pipeline provides enhanced representational diversity and resilience, accounting for the

170



Architectural Image Studies, ISSN: 2184-8645

performance improvement of over +3.2% in F1-score compared to the next best model. These findings
statistically reinforce the effectiveness and robustness of the proposed architecture for real-world threat
classification.

Quantum Attention Layer

After the encryption process, a quantum-inspired attention mechanism using trigo- nometric
activation functions is used to mimic interference patterns. Let the encrypted input be (z € R*)and the
learnable parameter vector be (8 € R®). The attention coef- ficients for every feature (alph ) are
calculated as:

![cos(zk,é'g) +sin(zg._,9,ﬂ .,
1 1 - 3
- 1= b g! | cos(zx, 0;) + 51n(zk,6“}].}

1 cos(zk - 0) + sin(z - 0)]

o
I

[ =;

.
Il

These coefficients are then applied multiplicatively:
[Zattn =a® Z]

The feature contributions in this formulation oscillate non-linearly according to their alignment with
(B), which is similar to quantum interference patterns. Based on learnt phase interactions, this enables
fine-grained feature relevance modification. Capturing contextual entanglements among features—that
is, how the existence of one feature influences the contribution of another—is this mechanism's main
ad- vantage. This is essential in threat detection since individual signs are frequently weak but powerful
when combined. Trigonometric interference is used to dynamically modify feature weights, which
improves the model's ability to identify high-order, subtle relationships.

Backpropagation through trigonometric functions is used for training with this lay- er, which is still
tractable and differentiable. We found that enhanced feature sparsity and selectivity resulted in better
comprehensible representations. Thus, the attention layer functions as an explanatory mechanism as
well as a performance enhancer.

Although the proposed hybrid quantum—classical model achieves high accuracy and robustness,
several limitations remain.

Interpretability: The interaction between quantum-inspired and classical layers is complex, limiting
model transparency. Integrating explainable Al (XAl) tools such as SHAP or relevance propagation
could enhance interpretability.

Scalability: Quantum-inspired transformations increase computational overhead, making large-
scale or real-time deployment challenging. Future work should explore model compression and
distributed training strategies.

Multi-Class Extension: The current framework is binary. Extending it to multi-class threat
identification (e.g., attack type or malware family) would require reformulating the output layer and
adopting hierarchical learning mechanisms.

Despite these constraints, the model provides a strong foundation for scalable, explainable, and
domain-adaptable quantum-inspired threat classification in cybersecurity.

Dual-Branch Feature Transformation and Fusion

The hybrid model's strength lies in its dual-branch structure, where the same input undergoes two
distinct transformation pipelines—one classical and one quantum- inspired—before their outputs are
fused to make final predictions. This section for- mally defines the flow of data through these branches
and explains how they are con- catenated to form a unified representation.

Let the final pre-processed input for each sample be denoted by the feature vector
X € Rd
Classical Branch Transformation

In the classical path, the input is passed through a sequence of dense layers:
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RY .= & A - g!(W’c{f}j R 4 .’)EFJ)? £=1,...,n, u=h"]

cc

?

Where:
o (W®)and(b®) are weight and bias matrices for the (i) —th
c c

layer.
e (o) is a non-linear activation function such as ReL.U.
(h( € Rdc) is the final classical representation.
Quantum-Inspired Branch Transformation
The quantum-inspired path performs a series of static and learned transfor- mations:

Encryption:

xq = Qx

where (Q € R4xd) is a non-trainable orthonormal matrix derived from QR decom- position.
Attention Modulation

[o:; =;sin!((quq]i),cos!((quq)i), (hg)ii =1 @i, (z4)s.]

' where (w; € R%)are learned parameters and ( ©O) denotes element-wise multipli-
cation.

Optional Decryption or Projection:

If an inverse or compression step is applied, it's typically:

[h® =; D, hy)

where (P € Rio*%)is a projection matrix.
Let the resulting quantum-transformed vector be:

hfinal € Rdg

Concatenation and Fusion

After both branches process the input independently, their outputs are concatenated into a unified
feature representation:

This fusion vector is then passed into downstream layers or classifiers (e.g., final dense layer or
ensemble anomaly detector) to produce the final output:

ﬁ = ol (Wf: huse + bf)

Where (W )nd(bs)are the fusion classifier parameters, and (y € [0,1]) is the predicted
probability of a threat label.
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Hybrid Neural Architecture
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Figure 1 Model Architecture

The two parallel branches of our model—a quantum-inspired path and a classical deep
feedforward path—are each in charge of capturing distinct data modalities Fig- ure 1. Standard fully
connected layers with dropout regularization and nonlinear acti- vations make up the classical branch.
The transformation for an input (xi) goes as

[h1 = ReLU(W;1 -x; +by) and h; = Dropout(ReLU(W; - hy + b3))]
In parallel, the quantum-inspired branch processes the same input through encryp-
tion, attention, and decryption operations:
[Zl = RCLU(WQ cx; + bQ)]
[z2=
QuantumAdttention(QuantumEncryption(z1))] [z3
= QuantumAttention(QuantumDecryption(z;))]
The outputs from both branches are concatenated:
[f=[h2 Il zz1 and y=G(Wf'f+bf)]

This late-fusion design enables every path to focus on different sources of infor- mation; classical
layers focus on local interactions and common patterns, whereas quantum paths focus on abstract,
generalized features. Mixing these pieces together forms a robust and expressive representation.

Grid search was used to optimize the depth and layer size of the model, and the ac- tivation
functions were selected with careful consideration to maintain the balance between gradient flow and
nonlinearity. Multi-perspective representation learning benefits were guaranteed by this hybrid model,
and it outperformed its single-branch counterparts.

Training and Optimization

We train the model using binary cross-entropy loss:
N
1
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[£ =~y Ztyilog(y) + (1 = y) log(1 - y)]]

The Adam optimization algorithm, which is known to be efficient with sparse gra-

dients and adaptive learning rate, is used for optimization. A polynomial decay learn- ing rate
schedule is used to avoid overfitting and reach convergence:

[ne=mo(1 =) — where ng =0.0005,y =0.5]

It's trained for up to a max of 100 epochs, with early stopping made active when validation loss
doesn't change for an interval of greater than ten epochs. To counter overfitting, methods of L2
regularization and dropout are used.

A stratified train-validation split allows for an equitable representation of the two classes during
training, while checkpointing allows us to recover the best model. This end-to-end optimization process
ensures that our model exhibits stable performance under different threat scenarios and attack
modalities.

Evaluation and Results

A complete experimental assessment was conducted with over one performance measure to
ensure the validity and robustness of the suggested hybrid structure. In order to get class distributions,
stratified sampling was used to divide the dataset into training (70%), validation (15%), and test (15%)
sets. Early stopping was performed after 50 epochs based on validation loss having flattened. The best-
performing checkpoint model, as represented by validation performance, can be observed in the results
below.

Accuracy and Loss Trends

Training vs Validation Accuracy
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0.9 1
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Figure 2 Training and Validation Accuracy

Training vs Validation Loss
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Figure 3 Training and Validation Loss

174



Architectural Image Studies, ISSN: 2184-8645

Relative training and validation accuracy after more than 50 epochs is illustrated in Figure 2. Early
epochs show quick improvement; at the last epoch, validation accura- cy remains at about 97.2%, while
the training accuracy is 99.3%. The persistently reducing gap between training and validation
performance indicates good generaliza- tion with little overfitting.

The results are also supported by the loss pattern depicted in Figure 3. Though there is significant
loss in validation loss prior to convergence, which is depicted by a plateau, the training loss is a smooth
declining trend and converges to values near zero eventually. The optimizer and learning rate schedule
configuration were success- fully implemented to ensure stable training, as evidenced by the absence
of spikes or oscillations. These plots together demonstrate the capability of the model to accurate- ly
represent complicated data distributions and extract useful patterns without suc- cumbing to overfitting
on account of noise or spurious correlations, thereby affirming the synergy between the classical
branches and quantum-inspired layers.

Confusion Matrix Analysis

Confusion Matrix

1000

800

- 600

Actual

- 400

- 200

Predicted

Figure 4 Confusion Matrix

The confusion matrix for the held-out test set is shown in Figure 4. For compari- son, false positives
(51) and false negatives (25) are overwhelmed by the number of true negatives (1141) and true
positives (1132). Balance in this instance indicates strong boundary lines with low error rates in both
classes.

In the area of cybersecurity, where minimizing undetected threats (FN) and un- wanted alarms
(FP) is of utmost importance, the approximately estimated false posi- tive rate (FPR) of about 4.3% and
the approximately estimated false negative rate (FNR) of about 2.2% are of special interest. The hybrid
model, due to its feature fu- sion mechanism, is strong in both aspects and is best equipped to handle
overlapping data.

The results confirm the integration of anomaly-aware learning through ensemble inference, which
helps to improve borderline predictions and increase confidence in the final classification outcomes.
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Precision-Recall and ROC Analysis
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Figure 5 Precision Recall Curve
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Figure 6 Recall Curve

The model possesses a high precision value of more than 0.95 across all but nearly the entire
range of recall, with only a sharp drop near perfect recall, as can be seen from the Precision-Recall
Curve (Figure 5). This indicates that even when sensitivity to positive instances is emphasized, the
classifier remains trustworthy and consistent.

The close to 100% area under the curve (AUC) value of 0.99, obtained from the ROC curve (see
Figure 6), indicates that the two classes are practically completely distinguished. In addition, the model's
applicability in real-time threat detection con-texts, where prompt detection and little error tolerance are
of paramount concern, is also validated by its close to 100% true positive rate and very low false positive
rate.

The discriminative power of the joint embeddings and quantum attentions is also supported by the
concurrent evaluation of the PR and ROC curves. The model is dis- criminative and accurate as it
resists spurious noise significantly while it highlights significant threat signatures effectively.

Summary of Key Metrics

e Training Accuracy: 99.3%

Validation Accuracy: 97.2%
e  Precision: 0.96

Recall: 0.98

e F1-Score: 0.97
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AUC-ROC: 0.99

The results affirm the overall argument of our research, which finds that a hybrid model
incorporating orthonormal quantum projections as well as attention modulation is more accurate and
stable than baseline models. The complementarity of well- defined entity properties, full-text
embeddings, and quantum-inspired variations in the context of cyber threat detection is upheld by the
significant improvements observed across all test measures.
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