
 

                                      Vol.6, Issue 4, pp.702-710, 2025 
DOI: https://doi.org/10.62754/ais.v6i4.668   

© by AP2 on Creative Commons 4.0 

International License (CC BY-NC 4.0) 
https://journals.ap2.pt/index.php/ais/index  

702 

 

 

  

Artificial Intelligence Framework for Concrete Compressive Strength 
Prediction 

Hung K. Nguyen1, Tu T. Nguyen2 

  

Abstract  

This study develops and validates a robust Artificial Intelligence (AI) framework for predicting 
concrete compressive strength. A hybrid dataset of 1,274 samples was established by combining 
244 locally tested specimens with 1,030 data points from a previously published source. Eight input 
parameters, including cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, 
fine aggregate, and curing age, were used. Python libraries were employed with two key 
preprocessing steps: a logarithmic transformation of concrete age to address the non-linear strength 
gain behavior and MinMax scaling to normalize input variables. The performance of the ANN was 
compared with Random Forest (RF) and Extreme Gradient Boosting (XGBoost) models. All machine 
learning models demonstrated strong predictive capability, with the XGBoost achieving the best 
performance, yielding a Mean Absolute Error (MAE) of 0.106 MPa and a Coefficient of Determination 
(R²) of 0.999 on the independent test dataset. The proposed framework offers a highly accurate and 
interpretable tool for practical applications in quality assurance, concrete mix optimization, and data-
driven decision-making within the construction industry. 

Keywords: Artificial Intelligence; Machine Learning; Soft Computing; Concrete Compressive 

Strength; Non-linear Prediction. 

 

Introduction 

Concrete remains the most widely used construction material worldwide due to its excellent 
mechanical performance, durability, and adaptability across diverse structural applications [1, 2]. 
Among its various properties, compressive strength is the most critical indicator of quality and 
performance, directly reflecting a structure’s load-bearing capacity, durability, and overall safety. 
Moreover, other key mechanical parameters, such as Young’s modulus and tensile strength, are often 
derived from or correlated with compressive strength. The strength of concrete is influenced by 
numerous factors, including the water-to-cement ratio, cement type, admixtures, aggregate 
characteristics, curing conditions, mix proportions, and testing methods [3]. Given these complex 
interactions, the ability to accurately predict compressive strength based on mix composition and curing 
parameters offers significant advantages for both design optimization and quality control in concrete 
production. 

Conventional evaluation of concrete compressive strength requires casting and curing cylindrical 
or cubic specimens, followed by destructive testing at standard ages, typically 3, 7, and 28 days. While 
this approach is reliable and widely accepted, it is destructive, time-consuming, and resource-intensive, 
often delaying construction progress as teams wait for results [4, 5]. Because the relationships among 
concrete’s constituent materials and its final strength are highly non-linear and interdependent, 
traditional statistical techniques, such as multiple linear regression, struggle to model these interactions 
effectively. As a result, their predictive accuracy is often limited when estimating strength from mix 
composition and curing conditions [6, 7]. 

Recent advances in soft computing techniques, including ANN, Random Forest, and XGBoost, 
have shown strong potential for predicting concrete properties and addressing complex engineering 
problems [8-15]. These methods effectively capture the non-linear, multi-dimensional relationships 
among material parameters that traditional statistical models often fail to represent. For instance, Pham 
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et al. [9] developed an ANN model using 190 geopolymer concrete samples and achieved highly 
accurate strength predictions with minimal error. Furthermore, another study comparing ANN and 
Adaptive Neuro-Fuzzy Inference System (ANFIS), for Fiber-Reinforced High-Strength Self-Compacting 
Concrete, found that ANN provided better predictive performance than ANFIS [11]. 

Beyond the field of concrete materials, AI-based models have been widely utilized to address a 
diverse range of engineering challenges [16–24]. Nguyen and Dinh [16] successfully employed ANN to 
predict bridge deck condition ratings using 2,572 records from the National Bridge Inventory, achieving 
an impressive accuracy of 98.5%. Likewise, Guijo-Rubio et al. [17] used an ANN to estimate solar 
radiation from satellite data, achieving high accuracy and outperforming models like Support Vector 
Regression. AI-based models have also been used to predict the fire resistance rating of timber 
structures [18], detect structural damage [19], and identify polymeric materials [20]. By learning from 
large datasets and uncovering hidden variable relationships, an AI-based model provides accurate, 
reliable predictive tools that reduce reliance on costly and time-consuming experimental testing. 

Despite the success of the AI approach, challenges remain in modeling early-age non-linear 
strength gain and ensuring model generalizability to local materials. This study aims to address these 
issues by creating a hybrid dataset that merges 244 local experimental samples with Yeh’s 1,030-
sample international benchmark [25], improving both relevance and robustness. A logarithmic 
transformation of curing age is introduced to better capture concrete’s maturation behavior. The study 
also compares a predictive ANN with other AI models to obtain the best advanced non-linear 
approaches for predicting concrete compressive strength. 

Materials and Methods 

A concise yet comprehensive overview of the methodology adopted in this study was presented, 
including the rationale for selecting the AI-based techniques and the overall workflow used to develop 
the predictive models. In addition, the procedures used for experimental data collection were briefly 
described in the subsequent sections. 

Methodology 

The research methodology for this study was systematically designed and executed in three 
distinct phases, as illustrated in the flowchart in Figure 1. The first phase (i) includes data collection of 
a 1,274-sample hybrid dataset from 244 local experimental samples and the 1,030-sample international 
benchmark dataset from Yeh [25]. The phase concluded with splitting the preprocessed data into an 
80% training set and a 20% testing set. The second phase (ii), model development and training, 
involved the construction and training of the predictive ANN models. In parallel, two other powerful 
machine learning models, RF and XGBoost, were also developed for comparative analysis. The last 
phase (iii) covers performance evaluation and interpretation. The final phase was dedicated to 
rigorously evaluating the trained models and interpreting their results.  

The performance of the ANN, RF, and XGBoost models was assessed on the independent test 
set using standard metrics (MAE, RMSE, and R²). A detailed analysis of the ANN model's training 
process and prediction accuracy was conducted. The methodology was completed in a final validation 
step, where the trained ANN model was tested against a completely new set of 20 independent 
experimental samples to verify its real-world generalization capability. 
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Figure 1. Research Methodology Flowchart. 

Experimental Program to Collect Data 

A key component of this study is the integration of local experimental data to ensure the model's 
relevance to regional materials and practices. A total of 244 concrete samples were prepared and tested 
in a laboratory under local climatic conditions. The concrete mixes were prepared using locally sourced 
materials. This included regular local Portland cement, natural river sand as fine aggregate, and 
crushed stone as coarse aggregate. A polycarboxylate-based superplasticizer was used to improve 
workability. The mix designs corresponded to common local concrete grades used, specifically B15 and 
B20, following TCVN 3118:2022 [26]. For each mix design, three cubic specimens of 150×150×150 mm 
were cast. Specimens were cured in a standard water tank at 20 ± 2°C until the testing date.  

Compressive strength tests were conducted at multiple curing ages: 3, 7, 14, 28, and 60 days. The 
compression tests conformed to the requirements of TCVN 3118:2022 [26] and were conducted at the 
Laboratory of Structural Engineering, Lac Hong University, using the Phoenix Compression Testing 
Machine. The maximum compression capacity of the testing equipment is 2000 kN. The compression 
tests were implemented with a constant loading speed of 70kN/10s until the test specimen failed. The 
maximum force for each specimen was documented. The final strength for each data point was 
recorded as the average of three specimen tests. 

2.3. Dataset Curation and Description 

Table 1 presents the statistical summary of the variables used in this study for predicting concrete 
compressive strength. The 1,274 samples dataset comprises eight input parameters, including cement, 
blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, fine aggregate, and curing age, 
and one output variable, compressive strength.  

Table 1. Descriptive Statistics of the Combined Dataset (N = 1,274) 

Variable Unit Minimum Maximum Mean 
Std. 

Deviation 

Cement kg/m³ 198.6 540 370.4 110.6 

Blast Furnace 
Slag 

kg/m³ 0.0 142.5 82.7 57.3 

Fly Ash kg/m³ 0.0 0.0 0.00 0.00 



Architectural Image Studies, ISSN: 2184-8645  

705 

 

Water kg/m³ 160 228 204.2 29.9 

Superplasticizer kg/m³ 0.0 2.5 0.74 1.14 

Coarse 
Aggregate 

kg/m³ 801 1145 974.4 77.8 

Fine Aggregate kg/m³ 594 992.6 773.6 80.2 

Age days 3 365 45.7 63.2 

Compressive 
Strength 

MPa 2.33 82.6 35.8 16.7 

The cement content ranges from 198.6 to 540 kg/m³, with an average of 370.4 kg/m³, reflecting 
diverse mix proportions. Blast furnace slag content varies between 0 and 142.5 kg/m³ (mean = 82.7 
kg/m³), indicating partial cement replacement in certain mixtures. Water content ranges from 160 to 228 
kg/m³ (mean = 204.2 kg/m³), and superplasticizer dosage varies from 0 to 2.5 kg/m³ (mean = 0.74 
kg/m³). The coarse and fine aggregates show mean values of 974.4 and 773.6 kg/m³, respectively, 
within typical limits for structural concrete. The curing age spans from 3 to 365 days (mean = 45.7 days), 
including both early and long-term strength development stages. The compressive strength ranges from 
2.33 to 82.6 MPa, with an average of 35.8 MPa and a standard deviation of 16.7 MPa, indicating a wide 
range of concrete quality. 

Data Preprocessing  

To enhance model stability and predictive accuracy, two key preprocessing steps were applied 
using Python’s Scikit-learn library [27]. First, a logarithmic transformation was performed on the age 
variable to address the highly non-linear relationship between curing time and compressive strength. 
The transformation, defined as Log_Age = log(1 + Age), effectively linearizes the early-age strength 
development, allowing the model to better capture the temporal strength gain behavior. Second, Min-
Max scaling was applied to normalize all input features within a uniform range, ensuring that variables 
with larger numerical magnitudes did not dominate the learning process. This normalization step is 
essential for achieving stable and efficient convergence, particularly in ANN training. Following 
preprocessing, the dataset was partitioned into two subsets: 80% for model training and 20% reserved 
as an independent test set for performance evaluation. 

Model Development 

In the subsequent sections, the structure of the proposed predictive models will be introduced. The 
proposed models aimed at establishing the non-linear relationship between various inputs to the 
compressive concrete strength. The performance evaluation criteria applied to assess these models 
were also clearly outlined to ensure transparency and reproducibility. The proposed model was 
developed in Python using Keras, NumPy, and Pandas libraries [28, 29]. 

ANN Architecture and Hyperparameter Optimization 

The design of an effective ANN requires careful selection of its architecture and hyperparameters 
using the Keras libraries. The entire workflow, from data handling with NumPy and Pandas to model 
building, was implemented in a Python environment to ensure reproducibility and transparency. The 
final ANN architecture was determined through an iterative process of experimentation to balance 
model complexity with performance on the validation set. The goal of this hyperparameter tuning was 
to find a configuration that could effectively capture the non-linear relationships in the data without 
overfitting [30]. The optimized architecture is detailed in Figure 2 and Table 2. 
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Figure 2. Architecture of the Proposed ANN Model 

 The network consists of an input layer with 8 neurons (one for each input feature), three 
sequential hidden layers, and a single output neuron. This deep structure allows the model to learn 
hierarchical features from the data. The hidden layers have a tapering structure (32, 16, and 8 neurons, 
respectively), which helps the network refine features from general patterns in the first layer to more 
specific ones in the subsequent layers before the final prediction. 

Table 2. Optimized Hyperparameters for the ANN Model 

Hyperparameter 
Selected 

Value 
Justification 

Environment Python 
High flexibility and extensive libraries for deep learning 

[28]. 

No. Hidden 
Layers 

3 
Provides sufficient depth to model complex non-

linearities [31]. 

Neurons in 
hidden layer 

32 - 16 – 
8 

A tapering structure that refines features from general 
to specific. 

Activation 
Function 

ReLU 
Prevents vanishing gradients and is computationally 

efficient. 

Output 
Activation 

Linear 
Standard for regression tasks to predict continuous 

values. 

Optimizer Adam Efficient adaptive learning rate algorithm [32]. 

Loss Function MSE Standard loss function for regression problems. 

Number of 
Epochs 

300 
Determined by observing convergence on the learning 

curve. 

Batch Size 16 
Batch size for regular weight updates and stable 

convergence. 

Ensemble Tree Models  

For comparative purposes, two leading ensemble tree models were also evaluated: (i) the RF 
model, an ensemble method that builds multiple decision trees on different sub-samples of the data and 
averages their predictions to reduce variance and prevent overfitting [33]. And (ii) XGBoost model, a 
highly efficient implementation of gradient boosting that builds trees sequentially, with each new tree 
correcting the errors of the previous ones. It is known for its high performance on structured/tabular 
data [34]. 

Model Performance Evaluation 

The performance of each model was assessed by calculating performance matrices including R2, 
MSE, and RMSE. The R2 measures the correlation between input and output parameters using Eq. 1.  
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where yi is the i th actual output, 𝑦̅  is the mean of the actual outputs, 𝑦̂𝑖 is the i th predicted output, 
and n is the total number of data samples.  

MSE is the average squared difference between predicted outputs and actual outputs. MSE can 
be computed using Eq. 2.   
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And RMSE can be calculated by Eq. 3. 
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Results and Discussion 

As noted earlier, the proposed AI-based models, configured with seven input variables and one 
output parameter, were developed to predict the compressive strength of concrete. Their predictive 
capability was thoroughly evaluated across the training, validation, and testing datasets using the 
coefficient of determination and the mean squared error. In addition, a supplementary experimental 
dataset consisting of 20 records was utilized to further assess the models’ performance under real-
world conditions. 

Analysis of the ANN Model 

Figure 3 shows the training and validation MAE of a model over 300 epochs. Both the training MAE 
(blue line) and validation MAE (orange line) decrease sharply during the first few epochs, indicating 
rapid initial learning. After the initial drop, the MAE gradually declines and stabilizes as the epochs 
progress, with both curves closely tracking each other, suggesting minimal overfitting. By the final 
epochs, the MAE reaches a very low and steady value, indicating that the model has converged and 
achieved high accuracy on both the training and validation datasets. 

 

Figure 3. Learning Curve of the ANN Model. 
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Comparative Performance of Predictive Models 

All three models were trained and evaluated on the same data splits, and the performance on the 
independent test set with 255 samples is summarized in Table 3. As can be seen, among the models, 
XGBoost achieved the highest accuracy, with the lowest MAE = 0.106 MPa and RMSE = 0.149 MPa, 
and an R² of 0.999, indicating near-perfect agreement with experimental results. RF also performed 
very well (MAE = 0.123 MPa, RMSE = 0.173 MPa, R² = 0.997), outperforming ANN (MAE = 0.376 MPa, 
RMSE = 0.525 MPa, R² = 0.994). These results highlight the superior capability of ensemble tree-based 
models in capturing the complex, non-linear relationships governing concrete strength. 

Table 3. Performance Comparison of ANN, RF, and XGBoost Models on the Test Set 

Model MAE (MPa) RMSE (MPa) R2 

ANN 0.376 0.525 0.994 

RF 0.123 0.173 0.997 

XGBoost 0.106 0.149 0.999 

Model Validation on Independent Experimental Data 

A scatter plot, Figure 4, comparing the predicted compressive strength versus the actual 
compressive strength of concrete samples, likely obtained from a machine learning model. Each point 
represents a single data instance, with the x-axis showing the experimentally measured compressive 
strength (MPa) and the y-axis showing the predicted values (MPa). A red dashed line corresponding to 
y = x is included as a reference to indicate perfect prediction accuracy. Data points that lie closer to this 
line demonstrate high prediction accuracy, while deviations indicate discrepancies between the 
predicted and actual strengths. The plot suggests that most predictions closely follow the to y = x line, 
particularly in the mid-range strengths, indicating strong model performance. 

To assess the model's performance in a real-world scenario, the  XGBoost model was selected 
and tested on a set of 20 independent experimental samples that were not part of the training or testing 
datasets. This validation model was specifically designed for a more streamlined application, using only 
the four most critical input variables: Cement, Water, Fine Aggregate, and Coarse Aggregate. As can 
be seen in Figure 4, the scatter plot shows some variability at lower compressive strengths, indicating 
that the model slightly underestimates or overestimates extreme values.  

 

Figure 4. Predicted Vs. Actual Compressive Strength for the Xgboost Model on the Test Set. 

Overall, the distribution of points demonstrates that the model effectively captures both the trend 
and variance of the actual measurements. On completely unseen data, the model achieved an MAE of 
0.737 MPa and an R² of 0.921, well within acceptable limits for practical engineering applications. Most 
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points closely align with the reference line, reflecting a high R² and low MAE and RMSE, which indicate 
reliable predictive performance. This visualization provides a valuable diagnostic tool for evaluating the 
accuracy and robustness of concrete strength prediction models in engineering contexts. 

Conclusion 

 This study developed and validated a predictive model for estimating concrete compressive 
strength by integrating local experimental data with an international benchmark dataset. The XGBoost 
model achieved an MAE of 0.106 MPa and an R² of 0.999 on the independent test set. Validation on 
20 new samples (R² = 0.921) confirmed its ability to generalize to unseen, real-world mix designs. While 
Random Forest showed slightly lower errors, XGBoost proved highly competitive and particularly 
suitable for complex, multi-output, and real-time applications, highlighting the benefit of combining local 
experimental insights with established global data. 

 The proposed model offers a reliable tool for quality control and mix design optimization in the 
construction industry. Beyond predictive accuracy, it provides a foundation for AI-driven systems in 
intelligent infrastructure management, enabling data-driven, efficient, and adaptable engineering 
practices. By demonstrating high accuracy, robust generalization, and practical applicability, this work 
represents a significant step toward next-generation AI-assisted structural engineering, supporting 
more informed and reliable decision-making in concrete construction. 
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