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Abstract

This study develops and validates a robust Artificial Intelligence (Al) framework for predicting
concrete compressive strength. A hybrid dataset of 1,274 samples was established by combining
244 locally tested specimens with 1,030 data points from a previously published source. Eight input
parameters, including cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate,
fine aggregate, and curing age, were used. Python libraries were employed with two key
preprocessing steps: a logarithmic transformation of concrete age to address the non-linear strength
gain behavior and MinMax scaling to normalize input variables. The performance of the ANN was
compared with Random Forest (RF) and Extreme Gradient Boosting (XGBoost) models. All machine
learning models demonstrated strong predictive capability, with the XGBoost achieving the best
performance, yielding a Mean Absolute Error (MAE) of 0.106 MPa and a Coefficient of Determination
(R?) of 0.999 on the independent test dataset. The proposed framework offers a highly accurate and
interpretable tool for practical applications in quality assurance, concrete mix optimization, and data-
driven decision-making within the construction industry.

Keywords: Artificial Intelligence; Machine Learning; Soft Computing; Concrete Compressive
Strength; Non-linear Prediction.

Introduction

Concrete remains the most widely used construction material worldwide due to its excellent
mechanical performance, durability, and adaptability across diverse structural applications [1, 2].
Among its various properties, compressive strength is the most critical indicator of quality and
performance, directly reflecting a structure’s load-bearing capacity, durability, and overall safety.
Moreover, other key mechanical parameters, such as Young’s modulus and tensile strength, are often
derived from or correlated with compressive strength. The strength of concrete is influenced by
numerous factors, including the water-to-cement ratio, cement type, admixtures, aggregate
characteristics, curing conditions, mix proportions, and testing methods [3]. Given these complex
interactions, the ability to accurately predict compressive strength based on mix composition and curing
parameters offers significant advantages for both design optimization and quality control in concrete
production.

Conventional evaluation of concrete compressive strength requires casting and curing cylindrical
or cubic specimens, followed by destructive testing at standard ages, typically 3, 7, and 28 days. While
this approach is reliable and widely accepted, it is destructive, time-consuming, and resource-intensive,
often delaying construction progress as teams wait for results [4, 5]. Because the relationships among
concrete’s constituent materials and its final strength are highly non-linear and interdependent,
traditional statistical techniques, such as multiple linear regression, struggle to model these interactions
effectively. As a result, their predictive accuracy is often limited when estimating strength from mix
composition and curing conditions [6, 7].

Recent advances in soft computing techniques, including ANN, Random Forest, and XGBoost,
have shown strong potential for predicting concrete properties and addressing complex engineering
problems [8-15]. These methods effectively capture the non-linear, multi-dimensional relationships
among material parameters that traditional statistical models often fail to represent. For instance, Pham
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et al. [9] developed an ANN model using 190 geopolymer concrete samples and achieved highly
accurate strength predictions with minimal error. Furthermore, another study comparing ANN and
Adaptive Neuro-Fuzzy Inference System (ANFIS), for Fiber-Reinforced High-Strength Self-Compacting
Concrete, found that ANN provided better predictive performance than ANFIS [11].

Beyond the field of concrete materials, Al-based models have been widely utilized to address a
diverse range of engineering challenges [16—24]. Nguyen and Dinh [16] successfully employed ANN to
predict bridge deck condition ratings using 2,572 records from the National Bridge Inventory, achieving
an impressive accuracy of 98.5%. Likewise, Guijo-Rubio et al. [17] used an ANN to estimate solar
radiation from satellite data, achieving high accuracy and outperforming models like Support Vector
Regression. Al-based models have also been used to predict the fire resistance rating of timber
structures [18], detect structural damage [19], and identify polymeric materials [20]. By learning from
large datasets and uncovering hidden variable relationships, an Al-based model provides accurate,
reliable predictive tools that reduce reliance on costly and time-consuming experimental testing.

Despite the success of the Al approach, challenges remain in modeling early-age non-linear
strength gain and ensuring model generalizability to local materials. This study aims to address these
issues by creating a hybrid dataset that merges 244 local experimental samples with Yeh’s 1,030-
sample international benchmark [25], improving both relevance and robustness. A logarithmic
transformation of curing age is introduced to better capture concrete’s maturation behavior. The study
also compares a predictive ANN with other Al models to obtain the best advanced non-linear
approaches for predicting concrete compressive strength.

Materials and Methods

A concise yet comprehensive overview of the methodology adopted in this study was presented,
including the rationale for selecting the Al-based techniques and the overall workflow used to develop
the predictive models. In addition, the procedures used for experimental data collection were briefly
described in the subsequent sections.

Methodology

The research methodology for this study was systematically designed and executed in three
distinct phases, as illustrated in the flowchart in Figure 1. The first phase (i) includes data collection of
a 1,274-sample hybrid dataset from 244 local experimental samples and the 1,030-sample international
benchmark dataset from Yeh [25]. The phase concluded with splitting the preprocessed data into an
80% training set and a 20% testing set. The second phase (ii), model development and training,
involved the construction and training of the predictive ANN models. In parallel, two other powerful
machine learning models, RF and XGBoost, were also developed for comparative analysis. The last
phase (iii) covers performance evaluation and interpretation. The final phase was dedicated to
rigorously evaluating the trained models and interpreting their results.

The performance of the ANN, RF, and XGBoost models was assessed on the independent test
set using standard metrics (MAE, RMSE, and R?). A detailed analysis of the ANN model's training
process and prediction accuracy was conducted. The methodology was completed in a final validation
step, where the trained ANN model was tested against a completely new set of 20 independent
experimental samples to verify its real-world generalization capability.
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Figure 1. Research Methodology Flowchart.
Experimental Program to Collect Data

A key component of this study is the integration of local experimental data to ensure the model's
relevance to regional materials and practices. A total of 244 concrete samples were prepared and tested
in a laboratory under local climatic conditions. The concrete mixes were prepared using locally sourced
materials. This included regular local Portland cement, natural river sand as fine aggregate, and
crushed stone as coarse aggregate. A polycarboxylate-based superplasticizer was used to improve
workability. The mix designs corresponded to common local concrete grades used, specifically B15 and
B20, following TCVN 3118:2022 [26]. For each mix design, three cubic specimens of 150%150x150 mm
were cast. Specimens were cured in a standard water tank at 20 + 2°C until the testing date.

Compressive strength tests were conducted at multiple curing ages: 3, 7, 14, 28, and 60 days. The
compression tests conformed to the requirements of TCVN 3118:2022 [26] and were conducted at the
Laboratory of Structural Engineering, Lac Hong University, using the Phoenix Compression Testing
Machine. The maximum compression capacity of the testing equipment is 2000 kN. The compression
tests were implemented with a constant loading speed of 70kN/10s until the test specimen failed. The
maximum force for each specimen was documented. The final strength for each data point was
recorded as the average of three specimen tests.

2.3. Dataset Curation and Description

Table 1 presents the statistical summary of the variables used in this study for predicting concrete
compressive strength. The 1,274 samples dataset comprises eight input parameters, including cement,
blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, fine aggregate, and curing age,
and one output variable, compressive strength.

Table 1. Descriptive Statistics of the Combined Dataset (N = 1,274)

Variable Unit Minimum Maximum Mean . SFd'
Deviation
Cement kg/m?3 198.6 540 370.4 110.6
Blast  Furnace kg/m? 0.0 142.5 82.7 57.3
Slag
Fly Ash kg/m? 0.0 0.0 0.00 0.00
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Water kg/m? 160 228 204.2 29.9

Superplasticizer kg/m?3 0.0 2.5 0.74 1.14
A Coarse kg/m® 801 1145 974.4 77.8

ggregate

Fine Aggregate kg/m?3 594 992.6 773.6 80.2

Age days 3 365 457 63.2

Compressive MPa 2.33 82.6 35.8 16.7
Strength

The cement content ranges from 198.6 to 540 kg/m?3, with an average of 370.4 kg/m?3, reflecting
diverse mix proportions. Blast furnace slag content varies between 0 and 142.5 kg/m*® (mean = 82.7
kg/m?), indicating partial cement replacement in certain mixtures. Water content ranges from 160 to 228
kg/m3®* (mean = 204.2 kg/m?), and superplasticizer dosage varies from 0 to 2.5 kg/m® (mean = 0.74
kg/m?3). The coarse and fine aggregates show mean values of 974.4 and 773.6 kg/m?, respectively,
within typical limits for structural concrete. The curing age spans from 3 to 365 days (mean = 45.7 days),
including both early and long-term strength development stages. The compressive strength ranges from
2.33 to 82.6 MPa, with an average of 35.8 MPa and a standard deviation of 16.7 MPa, indicating a wide
range of concrete quality.

Data Preprocessing

To enhance model stability and predictive accuracy, two key preprocessing steps were applied
using Python’s Scikit-learn library [27]. First, a logarithmic transformation was performed on the age
variable to address the highly non-linear relationship between curing time and compressive strength.
The transformation, defined as Log_Age = log(1 + Age), effectively linearizes the early-age strength
development, allowing the model to better capture the temporal strength gain behavior. Second, Min-
Max scaling was applied to normalize all input features within a uniform range, ensuring that variables
with larger numerical magnitudes did not dominate the learning process. This normalization step is
essential for achieving stable and efficient convergence, particularly in ANN training. Following
preprocessing, the dataset was partitioned into two subsets: 80% for model training and 20% reserved
as an independent test set for performance evaluation.

Model Development

In the subsequent sections, the structure of the proposed predictive models will be introduced. The
proposed models aimed at establishing the non-linear relationship between various inputs to the
compressive concrete strength. The performance evaluation criteria applied to assess these models
were also clearly outlined to ensure transparency and reproducibility. The proposed model was
developed in Python using Keras, NumPy, and Pandas libraries [28, 29].

ANN Architecture and Hyperparameter Optimization

The design of an effective ANN requires careful selection of its architecture and hyperparameters
using the Keras libraries. The entire workflow, from data handling with NumPy and Pandas to model
building, was implemented in a Python environment to ensure reproducibility and transparency. The
final ANN architecture was determined through an iterative process of experimentation to balance
model complexity with performance on the validation set. The goal of this hyperparameter tuning was
to find a configuration that could effectively capture the non-linear relationships in the data without
overfitting [30]. The optimized architecture is detailed in Figure 2 and Table 2.

705



Hidden layer 1

Input layer
(8 neurons)

(32 neurons)

Architectural Image Studies, ISSN: 2184-8645

Hidden layer 2
(16 neurons)

Hidden layer 3
(8 neurons)

Output layer
(1 neuron)

Figure 2. Architecture of the Proposed ANN Model

The network consists of an input layer with 8 neurons (one for each input feature), three
sequential hidden layers, and a single output neuron. This deep structure allows the model to learn
hierarchical features from the data. The hidden layers have a tapering structure (32, 16, and 8 neurons,
respectively), which helps the network refine features from general patterns in the first layer to more
specific ones in the subsequent layers before the final prediction.

Table 2. Optimized Hyperparameters for the ANN Model

Selected

Hyperparameter Value Justification

Environment Python 28] High flexibility and extensive libraries for deep learning

No. Hidden 3 Provides sufficient depth to model complex non-
Layers linearities [31].

Neurons in 32-16 - A tapering structure that refines features from general
hidden layer 8 to specific.

Activation Prevents vanishing gradients and is computationally

; RelLU -
Function efficient.

Output Li Standard for regression tasks to predict continuous

o inear

Activation values.

Optimizer Adam Efficient adaptive learning rate algorithm [32].

Loss Function MSE Standard loss function for regression problems.

Number of 300 Determined by observing convergence on the learning
Epochs curve.

Batch Size 16 Batch size for regular weight updates and stable

convergence.

Ensemble Tree Models

For comparative purposes, two leading ensemble tree models were also evaluated: (i) the RF
model, an ensemble method that builds multiple decision trees on different sub-samples of the data and
averages their predictions to reduce variance and prevent overfitting [33]. And (ii) XGBoost model, a
highly efficient implementation of gradient boosting that builds trees sequentially, with each new tree
correcting the errors of the previous ones. It is known for its high performance on structured/tabular

data [34].

Model Performance Evaluation

The performance of each model was assessed by calculating performance matrices including R?,
MSE, and RMSE. The R? measures the correlation between input and output parameters using Eq. 1.
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(Eq. 1)

where yi is the i th actual output, y is the mean of the actual outputs, ¥ is the i th predicted output,
and n is the total number of data samples.

MSE is the average squared difference between predicted outputs and actual outputs. MSE can
be computed using Eq. 2.

1 & 5
MSE =;Z(yl- -3)
=l (Eq.2)
And RMSE can be calculated by Eq. 3.

1& n
RMSE=\/;Z<y,~ -5’
i=1

(Eq. 3)
Results and Discussion

As noted earlier, the proposed Al-based models, configured with seven input variables and one
output parameter, were developed to predict the compressive strength of concrete. Their predictive
capability was thoroughly evaluated across the training, validation, and testing datasets using the
coefficient of determination and the mean squared error. In addition, a supplementary experimental
dataset consisting of 20 records was utilized to further assess the models’ performance under real-
world conditions.

Analysis of the ANN Model

Figure 3 shows the training and validation MAE of a model over 300 epochs. Both the training MAE
(blue line) and validation MAE (orange line) decrease sharply during the first few epochs, indicating
rapid initial learning. After the initial drop, the MAE gradually declines and stabilizes as the epochs
progress, with both curves closely tracking each other, suggesting minimal overfitting. By the final
epochs, the MAE reaches a very low and steady value, indicating that the model has converged and
achieved high accuracy on both the training and validation datasets.
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Figure 3. Learning Curve of the ANN Model.
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Comparative Performance of Predictive Models

All three models were trained and evaluated on the same data splits, and the performance on the
independent test set with 255 samples is summarized in Table 3. As can be seen, among the models,
XGBoost achieved the highest accuracy, with the lowest MAE = 0.106 MPa and RMSE = 0.149 MPa,
and an R? of 0.999, indicating near-perfect agreement with experimental results. RF also performed
very well (MAE = 0.123 MPa, RMSE = 0.173 MPa, R? = 0.997), outperforming ANN (MAE = 0.376 MPa,
RMSE = 0.525 MPa, R? = 0.994). These results highlight the superior capability of ensemble tree-based
models in capturing the complex, non-linear relationships governing concrete strength.

Table 3. Performance Comparison of ANN, RF, and XGBoost Models on the Test Set

Model MAE (MPa) RMSE (MPa) R?

ANN 0.376 0.525 0.994
RF 0.123 0.173 0.997
XGBoost 0.106 0.149 0.999

Model Validation on Independent Experimental Data

A scatter plot, Figure 4, comparing the predicted compressive strength versus the actual
compressive strength of concrete samples, likely obtained from a machine learning model. Each point
represents a single data instance, with the x-axis showing the experimentally measured compressive
strength (MPa) and the y-axis showing the predicted values (MPa). A red dashed line corresponding to
y = xis included as a reference to indicate perfect prediction accuracy. Data points that lie closer to this
line demonstrate high prediction accuracy, while deviations indicate discrepancies between the
predicted and actual strengths. The plot suggests that most predictions closely follow the to y = x line,
particularly in the mid-range strengths, indicating strong model performance.

To assess the model's performance in a real-world scenario, the XGBoost model was selected
and tested on a set of 20 independent experimental samples that were not part of the training or testing
datasets. This validation model was specifically designed for a more streamlined application, using only
the four most critical input variables: Cement, Water, Fine Aggregate, and Coarse Aggregate. As can
be seen in Figure 4, the scatter plot shows some variability at lower compressive strengths, indicating
that the model slightly underestimates or overestimates extreme values.
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Figure 4. Predicted Vs. Actual Compressive Strength for the Xgboost Model on the Test Set.

Overall, the distribution of points demonstrates that the model effectively captures both the trend
and variance of the actual measurements. On completely unseen data, the model achieved an MAE of
0.737 MPa and an R? of 0.921, well within acceptable limits for practical engineering applications. Most
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points closely align with the reference line, reflecting a high R? and low MAE and RMSE, which indicate
reliable predictive performance. This visualization provides a valuable diagnostic tool for evaluating the
accuracy and robustness of concrete strength prediction models in engineering contexts.

Conclusion

This study developed and validated a predictive model for estimating concrete compressive
strength by integrating local experimental data with an international benchmark dataset. The XGBoost
model achieved an MAE of 0.106 MPa and an R? of 0.999 on the independent test set. Validation on
20 new samples (R? = 0.921) confirmed its ability to generalize to unseen, real-world mix designs. While
Random Forest showed slightly lower errors, XGBoost proved highly competitive and particularly
suitable for complex, multi-output, and real-time applications, highlighting the benefit of combining local
experimental insights with established global data.

The proposed model offers a reliable tool for quality control and mix design optimization in the
construction industry. Beyond predictive accuracy, it provides a foundation for Al-driven systems in
intelligent infrastructure management, enabling data-driven, efficient, and adaptable engineering
practices. By demonstrating high accuracy, robust generalization, and practical applicability, this work
represents a significant step toward next-generation Al-assisted structural engineering, supporting
more informed and reliable decision-making in concrete construction.
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