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Abstract  

Rice production is increasingly under threat by a serious fungal disease in the Chidambaram region 
of Cuddalore district, especially false smut, sheath blight, and brown spot, which are becoming more 
severe under global climate change. Usually, farmer do their inspections at a later stage, which 
causes critical damage to the rice crops. This manual inspection is error-prone, time-consuming, 
and subjective. In these situations, AI-enabled tools and methods are essential for accurate and 
timely rice disease prediction. This research introduces a novel approach using deep learning–
driven image classification framework for accurate detection of rice plant diseases (DLDICF-
ADRPD). The DLDICF-ADRPD undergoes three different stages, namely data collection, data 
preprocessing, feature extraction, detection and classification of diseases. This combination leads 
to an efficient and robust disease classification system. The series of experiments was conducted 
to assess the proposed DLDICF-ADRPD performance using large dataset of rice leaf images from 
different disease types and growth phases, obtained from the publicly accessible Kaggle datasets. 
When compared to other existing disease prediction models, our DLDICF-ADRPD model performs 
better. Overall, the suggested DLDICF-ADRPD design greatly increases the reliability and accuracy 
of disease recognition, supporting global food security and sustainable agriculture. 

Keywords: Rice production, Rice Leaf Disease, Deep learning, VGG16, Disease Classification, 

LBP. 

 

Introduction 

With more cultivated land than any other major grain, rice is among the major food crops in the 
world [1]. However, the development and growth of rice might be impacted by rice diseases. The main 
fungal diseases that are increasingly endangering rice farming in the Chidambaram area of the 
Cuddalore district are sheath blight [2], brown spot, and false smut, which makes them even worse 
under varying climate conditions. Sheath blight incidence has been recorded to reach 35–45% in fields 
with high moisture content and dense plant populations in Cuddalore's coastal regions [3]. Likewise, 
brown spot disease has a 20–30% prevalence and has a major influence on grain quality and 
productivity. False smut infection has risen to 10–18% in a number of rice-growing countries, causing 
financial losses from discolored grains and increasing risks of post-harvest contamination [4].  A serious 
danger to local rice yield and farmer livelihoods is highlighted by the increasing trend of these illnesses. 

Pathogen survival and dissemination have been facilitated by high humidity, frequent variations in 
rainfall, and continuous rice-rice farming systems. The district may experience a continuous loss in yield 
stability if efficient management techniques—such as resistant varieties [5], balanced nutrient 
administration, and prompt disease monitoring—are not implemented. In order to protect food security 
and guarantee sustainable rice production in the Chidambaram agricultural environment, it is essential 
to address these challenges [6]. Rice yield and quality can be ensured by early disease detection and 
treatment, which can stop the spread of diseases and the misuse of pesticides. Latest advancements 
in DL, especially in the area of image processing, have demonstrated significant promise for the timely 
recognition and categorization of rice leaf diseases [7].  
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This study presents a novel approach using a deep learning–driven image classification framework 
for accurate recognition of rice leaf diseases (DLDICF-ADRPD). The DLDICF-ADRPD undergoes three 
different stages, namely data collection, data preprocessing, feature extraction, recognition and 
classification of diseases. This combination leads to an efficient and robust disease classification 
system. Overall, the suggested DLDICF-ADRPD design greatly increases the reliability and accuracy 
of disease detection. The main contribution of the study is given below: 

 Introduced a revolutionary technology called VGG19, which highlights a cutting-edge approach 
to agricultural imaging disease identification. 

 Presented the LBP model, which uses crop color and texture characteristics to categorize rice 
plant leaf diseases. 

 Offered a scalable and practical approach for real-time use in agricultural fields, promising to 
revolutionize disease-monitoring methods and promote sustainable crop management. 

 Achieved a great increase in the reliability and accuracy of disease recognition, supporting 
sustainable agriculture and global food security. 

The remaining article is systematized as follows: Reviews of relevant research for rice leaf disease 
recognition are given in the "Related works" section. The technique and the architecture of the 
suggested DLDICF-ADRPD model are presented in the "Methodology" section. The "Results and 
discussions" section presents, evaluates, and discusses the findings. The research is concluded, and 
possible future directions in this field are outlined in the "Conclusion and future work" section. 

Related Works 

Jiang et al. [8] employ DL and the SVM technique for the four rice diseases. First, CNNs are 
employed for extracting the image features of rice leaf disease. Second, we apply SVM model to predict 
and classify the particular disease types. To determine the SVM model's ideal parameters, the 10-fold 
cross-validation is applied. The simulation outcomes suggest that when the kernel parameter and the 
penalty parameter g = 50, the average accuracy rate of the rice disease detection model based on DL 
and SVM. 

Lu et al. [9] developed recognition approach for diagnosing rice sheath blight based on a BPNN 
model. First, a Sobel operator is utilized to segment the lesion's edge after the sample picture has been 
smoothed using median filtering and histogram equalization. This greatly lowers background 
information and enhances image quality. Next, using color and texture features, the image's matching 
feature parameters are retrieved. Lastly, a BPNN with good tunability and simple optimization is 
constructed for training and testing. The outcomes show that the BPNN can achieve up to 85.8% 
recognition accuracy when the nodes of hidden layer is set to 90. Based on the texture and color 
attributes of the sheath blight image, the BPNN model can effectively overcome the shortcomings of 
manual detection and has obtained good accuracy  

Ramesh and Vydeki [10] proposed DNN to detect crop diseases for typical images. There are 209 
photos in the dataset. In the picture preprocessing, RGB images are transformed into HSV for removing 
the background utilizing saturation and hue parts. In the image segmentation by k-means clustering, 
several color and texture features are extracted. Our suggested DNN is applied to improve the 
accuracy.  

Hasan et al. [11] utilized the SVM model to incorporate with the deep CNN model. The suggested 
model has been enhanced through the application of the transfer learning technique. After that, we used 
1080-image datasets of nine dissimilar rice diseases to re-train the suggested technique. The extracted 
features from the DCNN are then employed for training the SVM classifier. The proposed approach 
efficiently detected and diagnosed rice illnesses of nine dissimilar categories and reached a better 
accuracy. 

Proposed Model 

In this work, we present a novel DLDICF-ADRPD approach. The DLDICF-ADRPD model 
undergoes three different stages, namely data collection, data preprocessing, feature extraction, 
detection and classification of diseases. This combination leads to an efficient and robust disease 
classification system. Rice leaf diseases including sheath blight, brown spot and false smut are used in 
this study. Initially, input images of rice plants were collected from the given datasets. After that, image 
enhancement, resizing, and data augmentation methods are used to pre-process the acquired images. 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/support-vector-machine
https://www.sciencedirect.com/topics/chemical-engineering/support-vector-machine
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Following, the pre-processed data is fed into the feature extraction phase, where color and texture 
features are extracted through an LBP. Lastly, the VGG19 is applied for classification. Lastly, VGG19 
is applied for the classification of disease types. In the following, a detailed explanation of these stages 
is provided. The overall architecture of the DLDICF-ADRPD technique is shown in Figure 1. 

 

Figure 1. Overall Working Process of the DLDICF-ADRPD Model 

Data Pre-processing 

Initially, the DLDICF-ADRPD model performs data pre-processing. Numerous factors influence the 
process of acquiring images of rice plants with a camera. These elements, which have an impact on 
image quality, include illumination, solar angle, and weather. Thus, in order to acquire an improved 
high-quality image, image preprocessing is needed. Image resizing, augmentation, and enhancement 
are the three primary stages of the image preprocessing technique, as explained below [12]. 

Image Resizing 

To standardize the size of images across all types of datasets used, the input image is resized into 
224×224. The image resizing process can be given in the following equation. 

𝐷𝑟𝑒𝑠𝑖𝑧𝑒𝑑(𝑥, 𝑦) = 𝐷𝑡(
𝑥

𝑠
,

𝑦

𝑡
)                                      (1) 
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Here, 𝐷𝑟𝑒𝑠𝑖𝑧𝑒𝑑  represents the resized image, the scaling factor along the 𝑥‐and 𝑦-axis is referred to 

𝑠, and 𝑡. 

Data Augmentation 

In order to handle the dataset imbalance issue, which results in an unbalanced number in all the 
classes, data augmentation is used to increase the dataset size and resolve over-fitting issues. Data 
augmentation involves applying small adjustments to the original image for generating new images. 
The image is shifted across the 𝑥 and 𝑦 axes to apply the translation. An images from the dataset were 
selected at random, and certain transformation techniques were used. These operations are 
mathematically expressed as follows. 

𝐷𝑡 = 𝑇(𝐷)                                                   (2) 

In Eq.(2), 𝐷𝑡 represents the dataset after various transformations are applied on the image, the 

transformation operations applied can be represented as T, correspondingly. Here, △ 𝑥 & △y are the 

amount of translation in the 𝑥 and 𝑦 − 𝑎𝑥𝑖𝑠 and 𝐷𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑(𝑥, 𝑦) indicates the translated images in the 
dataset. 

𝐷𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑(𝑥, 𝑦) = 𝐷𝑡(𝑥 −△ 𝑥, 𝑦 −△ 𝑦)                 (3) 

𝐷ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝐹𝑙𝑖𝑝𝑝𝑒𝑑(𝑥, 𝑦) = 𝐷𝑡(𝑤𝑖𝑑𝑡ℎ − 𝑥 − 1, 𝑦)               (4)  

𝐷𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝐹𝑙𝑖𝑝𝑝𝑒𝑑(𝑥, 𝑦) = 𝐷𝑡(𝑥, height −𝑦 − 1)                       (5)  

Now, the horizontal and vertical flipped images can be represented by 𝐷−ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝐹𝑙𝑖𝑝𝑝𝑒𝑑(𝑥, 𝑦) 

and, 𝐷−𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝐹𝑙𝑖𝑝𝑝𝑒𝑑(𝑥, y), 𝑤𝑖𝑑𝑡ℎ and height are the image width, and height. In Eq. (6), 𝑐𝑜𝑠 () and 

𝑠𝑖𝑛 () are the trigonometric functions cosine and sine, correspondingly, the rotation angle in degrees is 
θ, and 𝐷−𝑟𝑜𝑡𝑎𝑡𝑒𝑑(𝑥, 𝑦) denotes the rotated images in the dataset as follows: 

𝐷𝑟𝑜𝑡𝑎𝑡𝑒𝑑(𝑥, 𝑦) = 𝐷𝑡(𝑥 ⋅  cos (𝜃) − 𝑦 ⋅  sin (𝜃), 𝑥 ⋅  sin (𝜃) + 𝑦 ⋅  cos      (6) 

Image Enhancement 

The objective of image enhancement is to increase the quality and visibility of image. Noise, 
illumination, and weather conditions are the problems affecting the images of rice leaf. The logarithmic 
transformation is used to tackle the illumination problem, which is the focus of this paper. One of the 
key strategies for improving an image's contrast is the logarithmic (𝐿𝑜𝑔) transformation. The low, 
narrow-range images are transformed into a varied range of output levels. The images more visible to 
human eyes after using the logarithmic transformation, which makes the darker colors become brighter. 
In order to attain narrow-range pixels in images, the normalization process is initially applied. The 
process of normalization involves dividing each pixel value by the maximum value, which is 255.  

𝐷𝑡𝑁𝑜𝑟𝑚 = 𝐷𝑡/255                                                (7) 

Here, the dataset after normalization can be represented by the term 𝐷𝑡𝑁𝑜𝑟𝑚  

𝐷𝑡 Log = 𝑐 ∗  log (1 + 𝐷𝑡𝑁𝑜𝑟𝑚)                             (8) 

Where 𝑐 is a scaling constant and 𝐷𝑡 Log  represents the dataset following the application of log 

transformation for image enhancement.  

Feature Extraction Based on LBP 

To identify the intrinsic features, or characteristics, of objects in an image, feature extraction is 
utilized. These features are crucial for classifying the classes and providing a mathematical description 
of the key information. In this study, we extract color, and texture features for the detection and 
classification of rice leaf diseases, which are used to differentiate between rice disease types. Features 
related to color and texture offer crucial information for identifying and categorizing rice leaf diseases 
[13]. The LBP method is a key texture descriptor that extracts texture features that are resistant to 

changes in illumination. LBP has various benefits, including low computational complexity, grey‐scale 
variations, implementation ease, and invariance to illumination. LBP initially assign a binary number to 
each pixel in the rice image by comparing its grey level to that of its nearby pixels. In a predefined patch, 
neighbors whose grey level is greater than the center pixel value then it receives a value of unity; if not, 
they receive a value of zero.  

𝐿𝐵𝑃(𝑥, 𝑦) = ∑ 2𝑝𝑁
𝑝=0 (𝑔(𝐵𝑝 − 𝐵(𝑥𝑐 , 𝑦𝑐))                        (9) 
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In Eq. (9), the LBP characteristics at the 𝑥𝑐, 𝑦𝑐 center pixel is represented by LBP (𝑥𝑐 , 𝑦𝑐). The 

value of center and neighbor pixels can be denoted by 𝐵(𝑥𝑐, 𝑦𝑐) and 𝐵𝑝. The neighbor pixel index is 

denoted by the index p. The function 𝑔(𝑥) will equal zero if 𝑥 is less than zero and one otherwise. 

In most studies, traditional LBP descriptors and their variants are utilized for gray‐scale image pre-
processing. Images of colored rice, which are used in many different applications, are becoming more 
and more in demand on the internet. Thus, color-texture features from colored rice images have been 
extracted using LBP descriptors. This can be obtained by expanding the LBP to process all the color 

channels in the RGB‐colored rice images as a simple gray-scale image. In Eq. (12), the features 
extracted from red, green, and blue channels are 𝐿𝐵𝑃(𝑅𝐺𝐵), the LBP features from the red channel are 

represented as 𝐿𝐵𝑃(𝑅𝑒𝑑), the LBP features from the green channel are denoted the 𝐿𝐵𝑃(𝐺𝑟𝑒𝑒𝑛), and 
the LBP features from the blue channel are denoted as 𝐿𝐵𝑃(𝐵𝑙𝑢𝑒). 

𝐿𝐵𝑃(𝑅𝐺𝐵) = 𝐿𝐵𝑃(𝑅𝑒𝑑) + 𝐿𝐵𝑃(𝐺𝑟𝑒𝑒𝑛) + 𝐿𝐵𝑃(𝐵𝑙𝑢𝑒)                (12) 

Classification Using VGG19 

Finally, the DLDICF-ADRPD model uses VGG19 for the recognition of rice leaf disease types. The 
ML classifiers come in a different form. Our dataset will define which categorization model we choose. 
The convolutional layer is the top layer of the CNN module. Most of the computing power can be 
managed by this module, as shown in Figure 2. A filter or kernel is used for the reduction of data or 
image size. A sliding window enables to employment of a small unit named a filter on the data. VGG19 
is a collapsible neural network with 19 layers. The rice images can be classified using a pre-trained 
network into 1000 different object categories. The network image's input dimensions are 250x250 [14].  

 

Figure 2. Architecture of VGG19 

Experimental Setup 

In this section, the experimental analysis and comparisons of the DLDICF-ADRPD model tested 
under the benchmark datasets [15] is discussed. The sample images of rice leaf disease are 
demonstrated in Figure 3. 
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Figure 3. Sample images of Rice Leaf Disease: (a) Sheath Blight, (b) Brown Spot, (c) False Smut 

Comparative analysis of Different Feature Extraction Approaches 

Color and texture feature extraction methods has been instrumental in the recognition and 
classification of rice leaf disease since they capture more crucial data for visual features of diseased 
plants. Better accuracy and robustness can be attained by combining texture and color features to 
extract structural and chromatic information from images. Table 1 shows the results of applying various 
texture feature extraction techniques to the entire image. From the results, we found that the LBP model 
that extracts features from the color channel in the image obtained better performance than other 
feature extraction approaches. Thus, in the subsequent tests, these techniques (as well as LBP) were 
applied as feature extraction techniques with an accuracy of 95.15% while other GLCM, HOG, and 
Color Correlogram obtained overall accuracy of 70.20%, 71.51% and 65.04%. 

Table 1. Experimental Analysis of Color and Texture Features Extraction Techniques 

FE method Metric (%) 
Disease Type Overall 

Accuracy SB BS FS 

GLCM 

Accuracy 91.12 90.45 90.31 

70.202 Precision 69.02 58.19 78 

Recall 83.17 62.2 75.2 

F-score 63.8 67.01 72.91 

HOG 

Accuracy 83.17 67.01 72.91 

71.51 
Precision 69.02 58.19 78 

Recall 59.31 62.2 75.2 

F-score 63.8 82.39 87.24 

Colour 
Correlogram 

Accuracy 70.67 67.18 73.25 

65.504 
Precision 50.94 49.13 69.38 

Recall 52.2 49.6 67.2 

F-score 52.2 49.6 67.2 

LBP 

Accuracy 73.5 57.25 75.002 

95.15 
Precision 72 61.8 74.2 

Recall 70.67 67.18 73.25 

F-score 85.75 82.29 86.89 
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Figure 4. Analysis of the Feature Extraction Method with Other Baseline Models 

The simulation analysis of the DLDICF-ADRPD approach are explored utilizing the Kaggle dataset, 
which contains 35126 samples with three different classes (Sheath blight, brown spot, and false smut) 
indicated in Table 1.  

Table 2 Details on Datasets 

Class 
No. of 

Count 

Sheath 
Blight 

2443 

Brown Spot 5292 

False Smut 873 

Total 
Count 

35126 

Figure 5 demonstrates the classification performance of the DLDICF-ADRPD approach under the 
test dataset. The five-fold confusion matrices provided by the DLDICF-ADRPD technique are shown in 
5 different splits. The result suggested that all class labels were precisely recognized and classified by 
the DLDICF-ADRPD technique on the Training phase (TRPH) and Testing phase (TSPH). 
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Figure 5. Confusion Matrix of DLDICF-ADRPD model 

Table 3 Performance analysis of DLDICF-ADRPD method with TRPH and TSPH   

Class  𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 

TRPH   

Sheath Blight  96.80 86.89 85.34 85.61 

Brown Spot 95.66 90.30 90.43 90.86 

False Smut 94.89 92.56 83.84 94.70 

Average 96.15 92.11 89.97 94.53 

TSPH   

Sheath Blight  86.84 80.77 82.97 79.87 

Brown Spot 80.70 79.47 79.64 69.05 

False Smut 94.96 89.44 88.88 73.15 

Average 95.20 90.87 86.12 82.27 

 

Figure 6. Average of DLDICF-ADRPD technique under TRPH and TSPH 
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In Figure 7, the training accuracy (TRAC) and validation accuracy (VLAC) outcomes of the 
DLDICF-ADRPD technique are determined under TRPH and TSPH. Over a range of 0-100 epochs, the 
accuracy values are calculated. The figure underlined that the TRAC and VLAC accuracy values reveal 
a growing tendency, which reports the potential of the DLDICF-ADRPD approach with increased 
outcomes across numerous iterations. Additionally, the TRAC and VLAC stay closer throughout the 
epochs, indicating less insignificant over-fitting and demonstrating the DLDICF-ADRPD technique's 
superior performance, ensuring consistent prediction on unknown samples. 

 

Figure 7.  Accuracy and Loss curve of DLDICF-ADRPD Technique 

The training loss (TLLS) and validation loss (VLLS) of the DLDICF-ADRPD approach is shown 
under TRPH and TSPH. Over a range of 0-100 epochs, the loss values are computed. It is shown that 
the TLLS and VLLS accuracy values explain a declining tendency, indicating the capability of the 
DLDICF-ADRPD method to balance a tradeoff between data fitting and generalization. The continual 
decrease in loss values also guarantees the exceptional performance of the DLDICF-ADRPD system 
and tunes the prediction results over time. 

To establish the exceptional performance of the DLDICF-ADRPD approach, a brief comparitive 
analysis is made in Table 4 and Figure. 8. The outcomes demonstrated that the DenseNet, ResNet-50-
SVM, AlexNet, and Inception-NB techniques have shown lesser classification results. However, the 
DLDICF-ADRPD technique demonstrates higher 𝑎𝑐𝑐𝑢𝑦 of 97.82%, 𝑝𝑟𝑒𝑐𝑛 of 95.87%, 𝑟𝑒𝑐𝑎𝑙 of 96.27%, 

and 𝐹𝑠𝑐𝑜𝑟𝑒 of 94.07%. 

Table 4 Comparative Analysis Of DLDICF-ADRPD With Other Existing Techniques  

Classifiers 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 

DLDICF-ADRPD 97.82 95.87 96.27 94.07 

DenseNet 96.74 96.72 93.50 95.11 

ResNet-50-SVM 95.13 94.42 96.98 94.70 

AlexNet 95.96 93.18 92.46 95.32 

Inception-NB 93.13 90.26 88.34 87.80 
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Figure 8. Comparative Outcome of DLDICF-ADRPD with other Existing Technqiues 

Conclusions 

In this article, we introduce a novel technique using a deep learning–driven image classification 
framework for accurate detection of rice plant diseases (DLDICF-ADRPD). The DLDICF-ADRPD 
undergoes three different stages, namely data collection, data preprocessing, feature extraction, 
recognition and classification of diseases. This combination leads to an efficient and robust disease 
classification system. The series of experiments was conducted to assess the proposed DLDICF-
ADRPD performance using a large dataset of rice leaf photos from different disease types and growth 
phases, obtained from the publicly accessible Kaggle dataset. When compared to other existing disease 
prediction models, our DLDICF-ADRPD model performs better. Overall, the suggested DLDICF-
ADRPD design greatly increases the reliability and accuracy of disease recognition, supporting 
sustainable agriculture and global food security. 
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