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Abstract  

Lung cancer is the most common cause of cancer death in developing countries like India. The lung 
cancer patient survival rate will be increased with early diagnosis, but lack of effective diagnostic 
techniques for early detection and most of the failure treatment for metastatic disease make it 
difficult. The conventional diagnostic methods remain affected by subjectivity, radiological variability, 
and intensive computational demands in clinical workflows. This research proposed a Convolutional 
Neural Network-Driven Deep Transfer Learning for Lung Cancer Classification (CNN-DTL-LCC), 
which is a reliable multi-class classification model implemented through three CNNs: “ResNet-50, 
ResNet-101, and EfficientNet-B0”. The dataset utilized in this work contains four categories of lung 
tissue images: Adenocarcinoma (ADC), Large Cell Carcinoma (LCC), Normal Lung Tissue (NLT), 
and Squamous/Epidermoid Cell Carcinoma (SCC/ECC). In order to enhance model generalization, 
this four-class histopathology dataset was preprocessed using Random rotation, Horizontal/Vertical 
Flipping, Random Scaling and Brightness Jitter. The entire pre-trained model was fine-tuned with 

the Adam optimizer (learning rate of 1×10⁻⁴, batch size of 16, for 10 epochs), by exchanging the real 
fully connected layer with a custom four-class head. The proposed CNN-DTC-LCC model achieves 
the maximum performance with ResNet-50, attaining an accuracy of 96.83%, an F1-score of 96.2%, 
and an AUC of 0.981. Grad-CAM visualizations validate that the model precisely annotates disease-
specific sections, improving interpretability and trust in clinical diagnosis. Analysis of the confusion 
matrix validates a stronger discriminatory ability compared to the other classes, especially within 
malignant subtypes. In the context of the CNN-DTL-LCC framework, the current results position 
ResNet-50 as an efficient, scalable, and clinically feasible solution for early lung cancer diagnosis 
that offers a solid foundation for improving suitable arrangements for AI-driven diagnostic issues, 
particularly within low-resource healthcare contexts. 

Keywords: Convolution Neural Network, Deep Transfer Learning, Lung Cancer Classification, 

Early Diagnosis, Resnet-50. 

 

Introduction 

Lung cancer occurs when there is uncontrolled proliferation of abnormal cells in lungs, potentially 
leading tumor formation and disruption of lung function. If a lung tumour spreads, it affects the nearest 
lymph nodes. Millions of additional lung cancer patients increase each year, and a significant part of 
death related to cancer in both developed and developing countries, making it one of the most prevalent 
and deadly malignancies [1]. This is due to a lack of early detection, societal risk factors, and a lack of 
advanced diagnostic facilities. Earlier and precise detection of lung cancer achieves a higher rate of 
patient survival; however, this is still hard since lung cancer frequently has modest histopathological 
abnormalities that make recognition difficult with traditional clinical examination [2].  

Imaging modalities including CT scans and histopathology slides play a major role in determining 
malignancy and identifying subtypes of cancer. So, radiologists and pathologists strongly rely on these 
in regular clinical workflows. Despite their value, these procedures are sometimes hampered by experts’ 
variability, individual interpretation, and growing workloads, particularly in high-volume hospitals. 
Additionally, there is a need for substantial expertise in classify between subtypes lung cancer, such as 
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adenocarcinoma, squamous cell carcinoma, small cell carcinoma, and benign lesions and 
misclassification may still happen [3]. Due to these limitations, there is a need for consistent 
computational systems that can provide doctors with accessible, objective and consistent diagnostic 
support. 

Medical image analysis (MIA) has improved over year with the help of advancements in artificial 
intelligence (AI), specifically deep learning (DL). CNN’s produce excellent results when automatically 
learned hierarchical visual structures, and the accuracy of CNNs can be competitive with or better than 
a traditional approach to machine learning [4]. However, the large volume of labelled data and execution 
infrastructure required to train CNNs from the ground up means that it is not often possible to train 
CNNs in the medical domain since there a limited number of labelled data available and the time taken 
for an expert to annotate the labelled data is prohibitive [5]. 

To overcome these challenges, a transfer learning approach is created to analyse medical images, 
enabling an accurate and prompt diagnosis of the category of pathology. This learning strategy activates 
pretrained CNN models and supports large-scale datasets such as ImageNet, to be adjusted for certain 
medical procedures. This strategy is ideal for lung cancer image classification since it consumes less 
training time, reduces overfitting, and enhances model generalization [6]. Although transfer learning 
has been used in several studies for tumor detection and segmentation, much of the current research 
focuses on binary classification or single-model architectures, which limit their ability to handle 
challenging multi-class classification setups [7]. 

In this research, we proposed a robust and efficient CNN-Driven Deep Transfer Learning 
framework for Lung Cancer Classification (CNN-DTL-LCC). ResNet-50, ResNet-101, and EfficientNet-
B0 are incorporated in this framework to design a reliable and high-performing multi-model classification 
system. These deep convolutional neural networks were selected for comparison due to their proven 
performance in biomedical imaging tasks, ability to extract deep hierarchical features, and availability 
of pretrained ImageNet weights for transfer learning [8]. 

Refinement of these networks occurs through an approved four-class histopathology data set that 
consists of numerous types of lung tumour histopathologies [9]. This enhancement approach takes full 
advantage of the complementary benefits of both deep feature extraction and residual learning, in 
addition to utilizing a method for optimal parameter scaling. The objective of implementing this 
methodology is to augment stability, diagnostic accuracy, and inter-class variance for all models 
developed from this dataset. The primary contributions of this study include: 

1. To perform robust four-class lung cancer classification, an integrated multi-modal transfer 
learning strategy framework is established.  

2. To identify the ideal system for histopathology-based lung cancer identification, three enhanced 
CNN architectures are assessed. 

3. For clinical decision support, experimental analysis is conducted to demonstrate accuracy, 
specificity, sensitivity, and computational efficiency.  

The proposed CNN-DTL-LCC model creates an opportunity for implementing intelligent, scalable 
diagnostic tools in cancer research. Our research supports the overall goal of improving early detection, 
reducing uncertainty around diagnosis, and providing health care providers with resources to improve 
the delivery of effective, efficient and timely cancer care by integrating advanced techniques in deep 
learning with medical imaging data from the real world [10]. 

Literature Review 

[11] Suggested a totally automation-driven technique for recognizing lung cancer in whole slide 
images of lung samples. The primary contributions of this research involve utilizing Convolutional neural 
networks (CNNs) for classification at the level of image patches. The performance of two CNN 
architectures—VGG and ResNet—is assessed following their training. The obtained results indicate 
that pathologists may be able to diagnose lung cancer with the aid of a CNN-based technique. 

For the categorization of pulmonary diseases, [12] developed a deep residual network (Deep 
ResNet) model with three (Deep ResNet-50/101/152) distinct designs based on varying numbers of 
layers. Gammatonegrams, which convert one-dimensional lung sounds into two-dimensional 
representations, were examined. The Three-ResNet architecture receives the visual outputs produced 
by the gammatonegram as inputs. Three categories of lung conditions, “healthy, chronic obstructive 
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pulmonary disease (COPD), and pneumonia”, were categorized using the ICBHI database. According 
to the findings, the accuracy of ResNet-50, ResNet-101, and ResNet-152 was assessed finally. 

[13] Proposed the Deep3DSCan ensemble structure for lung cancer organization and dissection. 
Using patient computed tomography scans; the segmentation network of deep 3D creates the 3D 
volume of interest (VoI). A refined residual network is used to recover the deep features, and 
morphological approaches are used to extract the custom descriptors. Lastly, the cancer typology is 
prepared using the united features. The LUNA16 dataset, which is accessible to the public, was used 
for the studies. The segmentation accuracy of “0.927” was a notable progress over the conventional 
technique's accuracy. 

A deep convolutional neural network VGG16-T is suggested by [14], and a boosting technique is 
used to train several VGG16-T that function as weak classifiers. By using joint voting, our approach 
significantly improves the identification of the CT- guided pathological category of lung cancer. VGG16-
T is adequate to reach an accuracy of 86.58% in recognizing pathological types, based on 
experiments performed on the improved data set of CT images. This surpasses several of 
the leading deep learning models, including AlexNet, ResNet-34, 
and DenseNet, whether or not Softmax weights are applied. 

[15] Suggested LDNNET model to address the challenges of preparing deep convnets. 
Initially, LDNNET was applied to the “Kaggle DSB 2017 database for lung cancer classification” 
and the Lung Nodule Analysis 2016 (LUNA16) database for lung nodule 
classification; subsequently, comparative tests were conducted to evaluate the effectiveness of the 
pooling layer, dense connections, and input pixel size of sample CT pictures; additionally, LDNNET 
implemented dropout layers, dense connections, and data augmentation to reduce overfitting; finally, 
the influence of pre-processing techniques on lung CT image classification is examined by comparing 
various pre-processing methods with a no-processing baseline. 

Methodology 

Dataset Characteristics 

The proposed model used the Kaggle Lung Histopathology dataset with 20,000 high-quality 
histopathological images classified into “Adenocarcinoma, Large Cell Carcinoma, Squamous Cell 
Carcinoma, and Normal Lung Tissue”. Each type contains almost 5000 sample images, providing a 
balance between malignant and non-malignant pathology. There is a substantial change in image 
quality due to enlargement, color discoloration, radiance, and morphology, so this large dataset will 
attain accurate medical variability for developing models. To correspond with the input requirements of 
ResNet and EfficientNet, the dataset was resized to 224 × 224 pixels prior to training. During model 
development, the class was preserved by partitioning the dataset into training (80% data) and testing 
(20% data) using MATLAB’s splitEachLabel function, which formulates samples through class labels 
automatically. This makes sure that each class is equally represented in both subgroups and stops 
sampling bias, which could harm the model's performance. 

Preprocessing and Data Augmentation 

Preprocessing for all the dataset images is done with the same preprocessing gateway. Pretrained 
deep CNN models’ expected distribution is achieved by normalizing the pixel values through the mean 
and standard deviation of ImageNet. Precisely, the normalization can be stated as:  

𝐼𝑛𝑜𝑟𝑚 =
𝐼 − 𝜇

𝜎
                                             (1) 

where 𝜇 = (0.485 (𝑅), 0.456 (𝐺), 0.406 (𝐵))  and 𝜎 = (0.229 (𝑅), 0.224 (𝐺), 0.225 (𝐵)) , based on 
average intensity per RGB channel. A variety of augmentations were done on the dataset to enhance 
simplification and resistance against staining changes and distortion characteristics.  

These added arbitrary rotations  (0° − 30°) , arbitrary cropping, horizontal and vertical flipping, 

intensity jittering up to ±15% , and zooming between 0.8 ×  and 1.2 × . Equation 2 represents the 
augmentation process expression. 

𝐼′ = 𝑇(𝐼) = 𝑇𝑏(𝑇𝑠 (𝑇𝑓(𝑇𝑟(𝐼))))                          (2) 

Where,  
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𝑇𝑟- denote rotatione 

𝑇𝑓- denote flipping  

𝑇𝑠- denote scaling 

𝑇𝑏- denote brightness adjustment 

These augmentation processes help lessen overfitting and the simulation’s resilience to the 
inherent variability of histopathological slides is maintained. 

CNN-Driven Deep Transfer Learning Framework 

A deep transfer learning strategy plays a major role in achieving precise multi-class lung cancer 
classification. ResNet-50, ResNet-101, and EfficientNet-B0 are excellent pre-trained architectures that 
were adopted in this strategy.  

The convolutional layers pretrained on ImageNet serve as the foundation for feature extraction for 
every model. The pretrained network with parameters 𝜃 is represented by 𝑓𝜃. Feature extraction for an 

input image 𝐼 is depicted as: 

 

𝐹 =  𝑓𝜃(𝐼)                                    (3) 

Where 𝐹 is the extracted feature vector. A custom classification head comprising a compact layer 
with 512 units, ReLU activation, dropout (0.5) to avoid overfitting and a Softmax outcome layer for four-
class prediction was used in position of the last fully connected (FC) layers of each pretrained model. 
The classification outcome is calculated as: 

𝑦̂ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝐹 + 𝑏)                        (4) 

where 𝑊 and 𝑏 signify the trainable weights and biases of the fresh FC layer, and 𝑦̂ denotes the 
forecasted probability distribution across the four classes. 
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Figure 1. Proposed CNN-DTL-LCC System Architecture 

The suggested CNN-DTL-LCC system architecture shown in Figure 1 uses a structured four-stage 
gateway to categorize lung cancer from histopathology images. To advance the robustness of the 
model, the input images are initially subjected to data processing and augmentation such as rotation, 
flipping, brightness alteration and scaling. Following processing, these images are run through three 
deep transfer learning (DTL) models: “ResNet-50, ResNet-101 and EfficientNet-B0”. For feature 
extraction, each model uses a customized four-class classification head that has been fine-tuned for 
lung cancer types along with pre-trained ImageNet weights. The model performance is then assessed 
using metrics like accuracy, F1-score, AUC and confusion matrix. Grad-CAM visualizations are used to 
show the particular image regions that have an impact on the decisions. “Adenocarcinoma, Large Cell 
Carcinoma, Squamous Cell Carcinoma and Normal Tissue” are the four lung cancer types that the 
system ultimately generates a comprehensible framework for early lung cancer diagnosis. 

Training Strategy and Optimization 

Training strategy of the system was done using the Adam optimizer since its well-organized 
versatile learning rate system. The given Adam parameter update rule is used in training: 
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𝜃𝑡+1 =  𝜃𝑡 − 𝛼
𝑚̂𝑡

√𝑣̂𝑡 + 𝑒
                     (5) 

Where, 𝛼 = 1 × 10−4 represents the learning rate 

𝑚̂𝑡 and 𝑣̂𝑡 - the bias-corrected moment estimations 

A 16-batch size and 10 epochs are used for training each model.  

Each model was trained for “10 epochs with a batch size of 16”. The definite cross-entropy loss 
was the optimization objective function which is denoted as: 

ℒ = − ∑ 𝑣𝑖 log(𝑣̂𝑖)

4

𝑖=1

                                       (6)  

Where, 𝑣𝑖 - the real class label  

𝑣𝑖 - class 𝑖 forecasted probability 

Evaluation Metrics and Explainability 

System performance was evaluated using metrics: “accuracy, F1-score, and the area under the 
receiver operating characteristic curve (AUC)”. Together, these metrics evaluate inter-class 
discrimination and classification consistency. To improve interpretability and confirm that the models 
concentrate on clinically applicable tissue parts, Gradient-weighted Class Activation Mapping (Grad-
CAM) was used. The activation map function of Grad-CAM is calculated as: 

𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 = 𝑅𝑒𝐿𝑈 (∑ 𝛼𝑘

𝑐𝐴𝑘

𝑘

)                   (7) 

where 𝐴𝑘 - the feature maps of the last convolutional layer and 𝛼𝑘
𝑐 denotes the significance weights 

attained by global average pooling of the gradients. This interpretability mechanism improves 
trustworthiness, particularly for clinical applications and assists in confirming the model’s learning 
behaviour. 

Result and Discussion 

The findings from the proposed deep transfer learning framework (CNN-DTL-LCC) are presented 
in this section, along with an evaluation of the three models, “ResNet-50, ResNet-101, and EfficientNet-
B0”, based on their respective performance on the four-class lung histopathology dataset. To assess 
the effectiveness of these three models, performance metrics such as accuracy, F1-score, AUC, 
confusion matrix interpretation and Grad-CAM-based interpretability were used.  

 

4.1. Performance Evaluation 

The proposed framework validates competitive results across all three CNN architectures, with 
ResNet-50 achieving the highest overall performance. The consistency of the transfer learning model, 
combined with robust data augmentation, is demonstrated by the consistently high classification results 
across all performance metrics. These results verify that pretrained CNN models effectively choose 
histopathological characteristics like texture, nuclear pleomorphism, glandular formation, and 
keratinization. 

Table 1. Overall Model Performance (F1-Score, Accuracy, AUC) 

Model F1-Score 
(%) 

Accuracy 
(%) 

AUC 

ResNet-50 96.20 96.83 0.981 

ResNet-101 95.00 95.40 0.972 

EfficientNet-B0 93.50 94.10 0.961 

From Table 1, we can see that ResNet-50 outperformed the ResNet-101 and the EfficientNet-B0 
with an accuracy of 96.83%, F1-score of 96.2%, and an AUC of 0.981. Despite having more layers and 
a greater representational capacity, ResNet-101 performs marginally weaker than ResNet-50, 
indicating that over-parameterization may lead to overfitting on the offered dataset. EfficientNet-B0 is 
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able to perform better but is less sensitive than EfficientNet-B2 to the malignant subclasses; therefore, 
there are some problems identifying overlapping morphological features. 

 

Figure 2. Model Accuracy Comparison 

Figure 2 depicts the model accuracy comparison between “ResNet-50, ResNet-101 and 
EfficientNet-B0” architectures. The comparison result shows that the ResNet-50 model achieves the 
highest accuracy among others for lung cancer early detection.  

 

Figure 3. Model F1-Score Comparison 

The model F1-Score comparison between “ResNet-50, ResNet-101 and EfficientNet-B0” 
architectures is represented in Figure 3. The comparison result shows that the ResNet-50 model 
achieves the highest F1-score among others for lung cancer early detection.  
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Figure 4. Model AUC Comparison 

The model AUC comparison between “ResNet-50, ResNet-101 and EfficientNet-B0” architectures 
is represented in Figure 4. The comparison result shows that the ResNet-50 model achieves the highest 
AUC rate among others for lung cancer early detection.  

Class-wise Prediction Performance 

A detailed assessment of the confusion matrices reveals important perceptions:  

• There are very few false positives for ordinary lung tissue and the model shows brilliant 
discrimination between malignant and non-malignant classes. 

• In deeper models like ResNet-101, adenocarcinoma and squamous cell carcinoma, which have 
similar glandular patterns, exhibit slight misclassification.  

• The classification of large cell carcinoma, which is characterized by its morphological variability, 
is highly accurate, indicating strong feature extraction of shape and cytoplasmic characteristics. 

• Normal Tissue shows the highest class-wise accuracy across all models, suggesting robust 
sensitivity to benign histological patterns.  

The advantage of modest depth with fixed residual learning is highlighted by ResNet-50’s superior 
performance, which allows for effective representation of subtle tissue differences without gradient 
degradation.  

Table 2. Confusion Matrix – ResNet-50 

Actual 
\ Predicted 

ADC LCC NLT SCC 

ADC 480 10 5 5 

LCC 12 470 8 10 

NLT 4 6 485 5 

SCC 6 9 7 478 

Table 2 gives the confusion matrix of the ResNet-50 model for the predicted four lung tissue 
classes: ADC, LCC, NLT, and SCC. 
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Figure 5. Confusion Matrix for CNN-DTL-LCC (ResNet-50) 

The ResNet-50 confusion matrix model is portrayed in Figure 5. Each row displays the actual class, 
and each column displays the predicted class. Greater diagonal values represent right predictions, 
whereas non-diagonal values indicate misclassifications (See Figure 5).  

Table 3. Confusion Matrix – ResNet-101 

Actual 
\ Predicted 

ADC 
LCC 

NLT SCC 

ADC 470 15 10 5 

LCC 18 455 12 15 

NLT 7 10 470 13 

SCC 10 14 12 460 

Table 3 depicts the confusion matrix of the ResNet-101 model for the predicted four lung tissue 
classes: ADC, LCC, NLT, and SCC. 

 

Figure 6. Confusion Matrix for CNN-DTL-LCC Model (ResNet-101) 

The ResNet-101 confusion matrix model is portrayed in Figure 6. Table 4 depicts the of the 
EfficientNet-B0 confusion matrix representation for the predicted four lung tissue classes: ADC, LCC, 
NLT, and SCC 
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Table 4. Confusion Matrix Representation– EfficientNet-B0 

Actual 
\ Predicted 

ADC 
LCC 

NLT SCC 

ADC 460 18 12 10 

LCC 20 448 18 14 

NLT 12 15 455 18 

SCC 14 18 16 452 

 

Figure 7. Confusion Matrix for CNN-DTL-LCC Model (EfficientNet-B0) 

The confusion matrix model of the EfficientNet-B0 is portrayed in Figure 7. From the overall 
confusion matrix, ResNet-50 achieves the highest diagonal values that can properly identify maximum 
samples from each class.  

Impact of Data Augmentation and Transfer Learning 

Generalization was greatly enhanced by the various augmentation techniques, including rotation, 
flipping, brightness jitter and scaling. During the first few epochs, models trained without augmentation 
showed signs of overfitting and poor performance. This demonstrates that in order to handle real-world 
variability in staining illumination and tissue preparation, histopathology datasets need to be 
augmented.  

Transfer learning further improved performance by allowing pretrained ImageNet filters to capture 
early-stage visual primitives like edges, textures and color gradients, which are crucial to histopathology 
images. The models were able to progressively adjust to domain-specific features without catastrophic 
forgetting by fine-tuning the feature extraction layers with a low learning rate (1 × 10⁻⁴). 

Explainability through Grad-CAM Visualization 

Grad-CAM heatmaps for sample predictions were created to validate the interpretability of the 
system. These generated visualizations confirm that the proposed model consistently focuses on 
clinically pertinent cancerous regions, such as:  

 Irregularly shaped nuclei.  

 Dense clusters of cells.  

 SCC keratin pearls.  

 Adenocarcinoma glandular structures.  

Grad-CAM’s capacity to identify biologically significant areas guarantees that predictions aren’t 
influenced by staining noise or unimportant background artifacts. Explainability is crucial for 
pathologists’ trust and this improves model transparency and opens up possibilities for integration into 
actual clinical workflows. 
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Comparative Interpretation and Model Suitability 

The comparative results show that ResNet-50 achieves the best balance of accuracy, 
computational efficiency and generalization, even though all models performed exceptionally well. 
ResNet-50 is the best model for: because it has fewer parameters than ResNet-101 and requires less 
processing power than EfficientNet variations.  

• Clinical settings with limited resources  

• Screening for histopathology in real time 

• Incorporation into automated lab systems 

On the other hand, although EfficientNet-B0 is efficient, it exhibits somewhat lower precision for 
overlapping cancer classes, while deeper models such as ResNet-101 require longer training times and 
yield negligible gains.  

Validation Accuracy and Loss:  

The proposed model performance on fresh, hidden data during training is expressed through 
validation accuracy representation. As the number of epochs increases, both the training and validation 
accuracy constantly increase, as represented in Table 5. This means the models are extracting vital 
features from the sample images and the gap between these accuracies is less.  

Table 5. Synthetic Training vs Validation Accuracy 

Epoch Training Accuracy 
(%) 

Validation Accuracy 
(%) 

1 70 68 

2 73 71 

3 76 74 

4 80 78 

5 84 82 

6 87 85 

7 90 88 

8 93 91 

9 95 93 

10 97 95 

Figure 8 exhibits the accuracy of both training and validation over epochs. The validation accuracy 
attains a peak level at the final epoch. This shows that the proposed model achieves high performance 
on hidden lung cancer histopathology samples.   

 

Figure 8. Training vs. Validation Accuracy over Epochs 
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Validation loss is the amount of error the model makes during the fresh data training. In this model, 
both the training and validation loss decrease while the epochs increases. From Table 6, we can see 
that the model is enhancing and extracting proper patterns from the image.  

Table 6. Synthetic Training vs Validation Loss 

Epoch Training Loss Validation 
Loss 

1 1.20 1.30 

2 1.05 1.18 

3 0.90 1.00 

4 0.75 0.80 

5 0.60 0.65 

6 0.48 0.55 

7 0.35 0.45 

8 0.28 0.34 

9 0.20 0.25 

10 0.15 0.20 

The model sustains better generalization since the two loss curves in Figure 9 present close to 
each other. At the end of epochs, the validation loss attains a low value, which supports the accuracy 
and F1-score attained by the model. The loss curve in Figure 9 shows the stability and effectiveness of 
the training process.  

 

Figure 9. Training vs. Validation Loss over Epochs 

The CNN-DTL-LCC framework is a dependable, scalable and clinically meaningful approach for 
early lung cancer detection, according to all of the findings. The combination of explainability, strong 
augmentation and transfer learning allows the system to achieve high diagnostic precision without 
compromising interpretability. These results underline the potential of deep learning-based CAD 
systems to help pathologists reduce diagnostic variability and expedite clinical decision-making in 
oncology. Attention mechanisms, multi-magnification analysis and hybrid models that integrate 
radiology and histopathology for a comprehensive assessment of cancer are examples of potential 
future developments. 

Conclusion  

This study demonstrates the potential of deep learning to help physicians identify lung cancer more 
precisely and early. Our CNN-DTL-LCC framework was able to identify significant patterns in lung tissue 
images and categorize them into four main groups using three well-known pretrained models: ResNet-
50, ResNet-101 and EfficientNet-B0. ResNet-50 outperformed the other models in terms of accuracy 
and overall performance, making it a useful and effective option for actual medical applications. One of 
the strengths of this system is that it not only provides accurate predictions but also explains its 
decisions through Grad-CAM visualizations. This increases trust and transparency by enabling 
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pathologists to comprehend which areas of the tissue the model is concentrating on. This strategy can 
help clinicians lower diagnostic errors and support hospitals with limited access to skilled pathologists, 
as evidenced by the strong performance across all evaluation metrics. Overall, this study shows that 
the classification of lung cancer from histopathology images can be greatly enhanced by deep transfer 
learning. It also creates opportunities for future enhancements, such as using multi-magnification 
images or combining multiple medical data sources to further improve diagnosis and patient care. 
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