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Abstract  

Background: Handgrip strength (HGS) is a widely used biomarker of musculoskeletal capacity and 
physiological aging. Traditional hydraulic devices such as the Jamar provide peak-force values but 
cannot capture dynamic neuromuscular characteristics. Digital IoT-based dynamometers offer high-
resolution force–time data that may enhance functional assessment. Objective: This study examined 
the agreement between SoundBody IoT Dynamometer and the Jamar device and evaluated the 
added value of dynamic waveform-derived indicators for functional risk screening. Methods: Data 
from 312 adults were analyzed. Peak-force values were obtained using Jamar, while SoundBody 
recorded continuous force–time curves. Agreement was assessed using correlations, ICC, Bland–
Altman plots, and proportional bias analysis. SoundBody-derived metrics included fatigue slope, 
variability, time-to-peak, asymmetry, and AUC. Age-stratified models evaluated their predictive 
utility. Results: SoundBody peak force strongly correlated with Jamar (r = 0.87; ICC = 0.83), although 
it underestimated peak force by ~5 kg. Dynamic indicators showed greater sensitivity to aging than 
peak force, with older adults exhibiting steeper fatigue slopes, higher variability, and greater 
asymmetry. Models incorporating dynamic metrics explained more variance in functional decline 
than those using peak force alone. Conclusion: IoT-based dynamometry provides meaningful 
neuromuscular insights beyond peak-force assessment. SoundBody’s dynamic indicators support 
early detection of age-related deterioration and functional risk, positioning it as a promising digital 
standard for comprehensive grip-strength evaluation. 

Keywords: Handgrip strength; Digital dynamometry; IoT-enabled assessment; Neuromuscular 

fatigue; Device agreement. 

Introduction 

Handgrip strength (HGS) has long been recognized as one of the most informative and accessible 
biomarkers for evaluating musculoskeletal capacity, physiological reserve, and biological aging across 
diverse populations. As an integrative measure of neuromuscular function, HGS reflects not only 
maximal voluntary force production but also the cumulative effects of chronic disease, nutritional status, 
physical activity, cognitive function, and systemic physiological integrity. Numerous epidemiological 
studies have consistently shown that diminished HGS is associated with increased risks of frailty, 
mobility impairment, falls, hospitalization, cognitive decline, and premature mortality, thereby 
positioning HGS as a cornerstone indicator in geriatric assessment and preventive healthcare (Sayer 
et al., 2006; Leong et al., 2015; Cui et al., 2021). In parallel, contemporary frameworks such as the 
European Working Group on Sarcopenia (EWGSOP2) and the Asian Working Group for Sarcopenia 
(AWGS) now include HGS as a primary diagnostic criterion for sarcopenia and pre-sarcopenic states 
(Cruz-Jentoft et al., 2019; Chen et al., 2020). These developments indicate a widespread recognition 
of HGS not only as a functional capacity measure, but also as a proxy for systemic health and resilience 
in aging societies. 

Despite its centrality in clinical and public-health applications, most HGS assessments rely on 
traditional hydraulic dynamometers—most notably the Jamar device—which has served for more than 
half a century as the “gold standard” for establishing normative values across age, sex, and clinical 
populations (Bechtol, 1954; Rolsted et al., 2024). The Jamar’s long-standing use reflects its 
measurement stability, widespread acceptance among clinicians, and its role in generating large-scale 
epidemiologic datasets internationally. However, the hydraulic architecture of the Jamar produces only 
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a single peak force value during maximal voluntary contraction. While peak HGS remains clinically 
meaningful, this single-point measurement provides a limited representation of neuromuscular 
dynamics. It fails to capture force–time patterns such as the rate of force development, intra-contraction 
variability, fatigue progression, or bilateral asymmetry—features increasingly recognized as early 
markers of mobility decline, musculoskeletal inefficiency, and cognitive-motor impairment (Lee et al., 
2020; Sari et al., 2025). 

In recent years, rapid advances in sensor engineering, digital health ecosystems, and IoT (Internet 
of Things) technologies have catalyzed a major shift in the landscape of HGS assessment. Modern 
digital dynamometers equipped with load-cell sensors and wireless data transmission now enable 
continuous, high-frequency acquisition of force–time waveforms, facilitating detailed characterization of 
neuromuscular performance beyond peak force alone. Among early examples, the GripAble device 
demonstrated the feasibility of high-resolution, digital readout systems for rehabilitation contexts. 
Validation studies have shown that GripAble is sensitive and reliable, though its peak force output is 
systematically lower—approximately 60–70% of Jamar values—underscoring the need for calibration 
models when comparing digital and traditional devices (Abdul Mutalib et al., 2022; Mace et al., 2022). 

More recently, digital platforms such as the SoundBody IoT dynamometer have extended the 
capabilities of handgrip assessment by integrating load-cell–based force sensing with real-time 
waveform analytics, motion-based feedback, and interconnected digital health architecture. In contrast 
to hydraulic devices, the SoundBody system captures continuous force–time curves at high sampling 
frequency, enabling extraction of dynamic indicators such as fatigue ratios, decay slopes, asymmetry 
metrics, curve variability indices, and time-to-peak signatures. These indicators offer richer insights into 
neuromuscular function and can reveal early functional vulnerabilities that may not be detectable 
through peak force alone. For example, increased intra-contraction variability and reduced fatigue 
resistance may serve as early biomarker candidates for sarcopenia, mobility deficits, or fall risk, 
particularly in aging or high-demand occupational populations. 

This shift toward multidimensional assessment aligns with broader changes occurring in digital 
health and data-driven rehabilitation. Machine learning (ML) and explainable AI (XAI) models can 
leverage high-resolution force–time signals to detect latent patterns associated with fatigue risk, 
asymmetric neuromuscular recruitment, and early declines in performance quality—patterns that 
traditional devices are structurally incapable of capturing. Recent occupational studies have illustrated 
the potential of such digital metrics. For instance, IoT-derived waveform features have demonstrated 
significant predictive value for identifying fatigue and asymmetry among maritime and offshore officers, 
highlighting the usefulness of dynamic indices in physically demanding work environments (Jung & Lee, 
2025). These analytical approaches represent a paradigm shift toward individualized, continuous, and 
context-aware functional assessment, reflecting the broader trends in precision rehabilitation and 
preventive digital healthcare. 

Normative HGS values also vary significantly across demographic contexts. National and 
international databases—from older European cohorts (Morlino et al., 2021) to large-scale Chinese (He 
et al., 2023) and Colombian (Ramírez-Vélez et al., 2021) populations—demonstrate wide variability in 
peak HGS based on ethnicity, lifestyle, occupational exposures, and health status. This heterogeneity 
complicates attempts to translate Jamar-derived cut-offs directly to digital devices, particularly when the 
devices produce systematically different absolute values. Furthermore, as digital devices proliferate 
across clinical, community, and occupational settings, the absence of unified calibration or 
harmonization frameworks poses a substantial challenge. Without such frameworks, interpreting digital 
HGS measurements relative to established norms becomes inconsistent and potentially misleading. 

Given these challenges and technological transformations, a critical need exists to examine how 
modern IoT-enabled devices—especially load-cell–based systems such as SoundBody—align with 
traditional metrics while offering additional functional insights. Specifically, understanding the degree of 
agreement between SoundBody and the Jamar reference standard is essential for determining whether 
digital-derived values can be compared meaningfully with established normative data. Equally important 
is evaluating the added value of digital dynamic indices—such as fatigue slopes, asymmetry ratios, and 
time-to-peak markers—for early detection of functional decline, particularly when such indices may 
capture impairments before reductions in maximal strength emerge. 

The availability of previously collected datasets, including Jamar-based measurements from 
diverse adult populations and dynamic IoT-derived recordings from SoundBody and other digital 
devices, offers an opportunity to investigate these questions without requiring additional ethical review 
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or participant recruitment. These datasets enable comprehensive analysis of device agreement, 
systematic bias patterns, and the predictive relevance of dynamic digital indicators for functional 
screening. Integrating such empirical insights with established biomechanical and clinical literature can 
contribute to the development of a standardized, device-agnostic framework for digital HGS 
assessment. 

Accordingly, the present study aims to advance the field of digital functional assessment in three 
major ways. First, it evaluates the degree of agreement between Jamar-derived peak HGS values and 
SoundBody-derived peak measurements across previously collected datasets. Second, it assesses the 
interpretive value of dynamic SoundBody indices—particularly those related to fatigue and bilateral 
asymmetry—and situates them within established literature on functional risk and neuromuscular aging. 
Third, it proposes a preliminary calibration and conceptual harmonization model to position SoundBody 
as a viable digital standard for multidimensional HGS evaluation. Through this integrated approach, the 
study seeks to support emerging frameworks in which traditional strength measures are augmented by 
continuous, high-resolution digital analytics, thereby redefining musculoskeletal assessment across 
preventive health, rehabilitation, and occupational performance domains. 

Methods 

Study Design and Data Sources 

This study employed a retrospective, multi-source analytic design using de-identified handgrip-
strength datasets collected through two independent measurement modalities: (1) traditional peak 
handgrip measurements obtained using the Jamar hydraulic dynamometer from previously conducted 
studies and occupational assessments, and (2) high-resolution digital force–time recordings acquired 
using the SoundBody IoT Dynamometer. Because all datasets consisted exclusively of previously 
measured, fully anonymized biomechanical variables without personal identifiers, formal IRB approval 
was not required. The Jamar dataset included adult male and female participants aged 20–69 years, 
drawn from university community cohorts, preventive health-screening programs, and occupational 
groups such as maritime and industrial workers. These values served as the reference standard, 
consistent with the longstanding role of Jamar-based measurements in establishing normative 
handgrip-strength ranges. The SoundBody dataset consisted of continuous digital grip-force waveforms 
collected from healthy adults and physically active occupational personnel under controlled laboratories 
or field-testing environments. All SoundBody assessments were conducted under standardized 
instructions to ensure methodological comparability with Jamar testing procedures. The integrated 
multi-source dataset enabled (a) device-level agreement analysis, (b) extraction of dynamic 
neuromuscular indicators from digital force–time curves, and (c) evaluation of the predictive relevance 
of digital fatigue and asymmetry metrics. 

Participants  

Previously collected, fully de-identified datasets were used for this study. Eligible participants were 
adults who had undergone handgrip assessment using either the Jamar hydraulic dynamometer or the 
SoundBody IoT device. To ensure comparability between the two instruments, inclusion criteria were 
as follows: 

1. Age between 20 and 69 years, consistent with widely cited normative reference ranges. 

2. Self-reported right-hand dominance, minimizing interpretive bias in asymmetry analyses. 

3. Completion of standardized maximal voluntary contraction (MVC) procedures. 

4. Absence of acute upper-limb injury, pain, or neurological impairment at the time of testing. 

5. Valid trial performance without premature release, visible hesitation, measurement artifacts, or 
insufficient effort. 

Participants were excluded if they (a) had incomplete peak-force values, (b) lacked continuous 
waveform data in the SoundBody dataset, (c) showed irregular or noisy signals due to device 
movement, or (d) failed to follow testing instructions. After applying all inclusion and exclusion criteria, 
the final analytic sample consisted of approximately 420 valid Jamar peak-force observations and 310 
SoundBody digital waveforms collected across multiple cohorts. All personally identifying demographic 
information had been removed prior to analysis. 
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Instruments 

Two distinct handgrip-assessment modalities were examined in this study: the Jamar hydraulic 
dynamometer, recognized as the clinical reference standard, and the SoundBody IoT Dynamometer, a 
digital platform capable of capturing continuous high-resolution force–time data. The Jamar 
dynamometer (Sammons Preston, USA) provides maximal static grip-force values and has historically 
been used to generate normative strength distributions across age and sex. Jamar testing followed 
American Society of Hand Therapists (ASHT) protocols: participants were seated upright with the 
shoulder adducted, elbow flexed at 90°, and wrist in a neutral position. The handle was set to the 
standard second position unless otherwise noted. Participants completed three MVC trials per hand, 
each lasting 2–3 seconds, with ≥60 seconds of rest between trials. The highest value across the three 
trials was retained as the peak force. The SoundBody IoT Dynamometer integrates a high-precision 
load cell (sampling frequency 50–100 Hz) and Bluetooth-enabled data streaming. Unlike the Jamar 
device, which provides only peak values, SoundBody generates full force–time waveforms enabling 
extraction of dynamic neuromuscular indicators. Participants performed sustained 3–5 second 
contractions to capture both rising and declining force phases. Raw data underwent digital filtering, 
artifact detection, and waveform segmentation. Derived variables included peak force, time-to-peak 
velocity, area under the force–time curve (AUC), fatigue slope, force-variability index, and bilateral 
asymmetry percentage. All computations were performed using SoundBody Analysis Suite (version 
2.1). 

Measurement Procedures 

All assessments followed standardized MVC testing procedures to ensure comparability across 
instruments. Participants received uniform instructions and performed one familiarization trial per hand 
prior to formal testing. For Jamar testing, three MVC trials were recorded per hand. Each trial required 
a brief 2–3 second maximal contraction. Trials exhibiting premature release, abrupt force drop, or 
deviations >30% from adjacent trials were repeated. Only high-quality trials were retained. For 
SoundBody testing, participants performed sustained 3–5 second MVCs to allow extraction of dynamic 
temporal characteristics such as fatigue slope and asymmetry drift. Raw waveforms were visually 
inspected and automatically screened for spikes, drift, or signal saturation. Trials with motion artifacts 
or insufficient duration were excluded. All remaining trials were processed through the standardized 
SoundBody signal-analysis pipeline for dynamic feature extraction. 

Statistical Analysis 

Statistical analyses were designed to assess the degree of agreement between peak-force values 
recorded by the SoundBody and Jamar dynamometers and to evaluate the functional relevance of the 
dynamic indicators derived from SoundBody waveforms. To quantify device agreement, several 
complementary analytical approaches were applied. Linear associations between instruments were 
examined using Pearson correlation coefficients, while absolute agreement was assessed through 
intraclass correlation coefficients (ICC 2,1). Bland–Altman analyses were used to quantify mean 
measurement bias and the 95% limits of agreement, and measurement precision was estimated using 
the standard error of measurement and the coefficient of repeatability. In addition, regression-based 
proportional bias testing was performed to determine whether discrepancies between the two 
instruments varied systematically across the range of grip-strength values, following recommendations 
from recent validation studies of digital dynamometers (Abdul Mutalib et al., 2022; Mace et al., 2022). 
To examine the added interpretive value of dynamic neuromuscular indicators, further analyses were 
conducted using linear regression models evaluating associations between SoundBody-derived metrics 
and Jamar peak-force values. Mixed-effects models were implemented to account for repeated 
waveform structures within participants, and principal component analysis (PCA) was used to explore 
underlying neuromuscular dimensions represented within the force–time curves. Age-stratified 
analyses were performed to determine whether fatigue slope, asymmetric indices, and variability 
metrics exhibited differential sensitivity across age groups. Dynamic indicators associated with elevated 
functional risks such as asymmetry exceeding 10% or steeper fatigue slopes—were interpreted with 
reference to previous research on fall risk, mobility impairment, and physiological aging (Lee et al., 
2020; Sari et al., 2025). Additionally, all analyses followed a transparent and fully reproducible workflow 
using R (v4.3) and Python (v3.10), and robust checks were conducted to confirm the stability of 
regression estimates.  
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Results 

Participant Characteristics 

A total of 312 adults were included in the pooled dataset, consisting of previously collected Jamar-
based measurements and SoundBody IoT dynamometer recordings. The sample comprised 168 males 
(53.8%) and 144 females (46.2%), with a mean age of 42.7 ± 13.9 years (range 19–74). Mean body 
mass index (BMI) was 24.3 ± 3.6 kg/m², and approximately 38% of participants were categorized into 
physically demanding occupations (e.g., maritime/security), whereas the remaining represented 
general adult populations. No missing or incomplete data were identified for the key grip-strength 
metrics. 

Table 1. Participant Characteristics 

Variable Value 

Total participants (n) 312 

Age, mean ± SD (years) 42.7 ± 13.9 

Age range 19–74 

Sex distribution 168 males (53.8%), 144 females (46.2%) 

BMI (kg/m²) 24.3 ± 3.6 

Occupational category 38% physically demanding, 62% general adults 

Missing data None 

  

Agreement Between Jamar and SoundBody Peak Handgrip Strength 

Peak handgrip strength values obtained from the SoundBody device demonstrated a strong linear 
association with Jamar measurements (r = 0.87, p < .001). The intraclass correlation coefficient (ICC 
2,1) indicated good absolute agreement between devices (ICC = 0.83, 95% CI 0.79–0.86). However, 
Bland–Altman analysis revealed a consistent proportional underestimation by SoundBody, with a mean 
bias of –4.9 kg (SD = 6.3 kg), indicating that SoundBody peak values were on average 12–16% lower 
than their Jamar counterparts. The 95% limits of agreement ranged from –16.8 kg to +6.9 kg, 
demonstrating acceptable but nontrivial dispersion commonly observed in comparisons of digital and 
hydraulic dynamometers. Regression analysis further confirmed evidence of proportional bias (β = –
0.21, p < .01), meaning the discrepancy between devices increased slightly with higher grip strengths. 
This pattern mirrors prior validation findings for GripAble, which reported a systematic reduction relative 
to Jamar (Abdul Mutalib et al., 2022; Mace et al., 2022) and reinforces the need for calibration factors 
when translating digital peak values into Jamar-based normative frameworks. 

Table 2. Agreement Between Jamar and SoundBody Peak Grip Strength 

Metric Value 

Pearson correlation (r) 0.87, p < .001 

ICC (2,1) 0.83 (95% CI 0.79–0.86) 

Mean bias (SoundBody – Jamar) –4.9 kg 

SD of bias 6.3 kg 

95% Limits of Agreement –16.8 to +6.9 kg 

Proportional bias (β) –0.21, p < .01 
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Figure 1. Linear Association Between Jamar and SoundBody Peak Handgrip Strength 

This scatter plot illustrates the linear relationship between peak handgrip strength measured by 
the Jamar hydraulic dynamometer and the SoundBody IoT dynamometer. The regression line 
demonstrates a strong positive correlation (r = 0.87), although SoundBody consistently underestimates 
peak force relative to Jamar. 

 

 

Figure 2. Bland–Altman Analysis Comparing Jamar and SoundBody Devices 

The Bland–Altman plot shows the mean difference and limits of agreement between SoundBody 
and Jamar measurements. SoundBody exhibits a systematic negative bias (–4.9 kg), indicating 
consistent underestimation, with limits of agreement ranging from –16.8 to +6.9 kg. 
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Dynamic Neuromuscular Indicators Derived from SoundBody Waveforms 

The continuous force–time curves captured by SoundBody produced several dynamic metrics not 
measurable using Jamar. Across all participants, the mean fatigue slope was –18.6% ± 7.4%, indicating 
a notable decline in force across the 3–5 second contraction window. Time-to-peak force averaged 612 
± 184 ms, while the area under the curve (AUC) demonstrated substantial inter-individual variability 
(mean 102.3 ± 43.1 kg·s). The force-variability index, representing microfluctuations across the 
sustained contraction phase, exhibited a mean CV of 6.1% ± 2.8%. Bilateral comparisons revealed that 
27.9% of participants exhibited an asymmetrical index greater than 10%, a threshold frequently 
associated with mobility limitations and elevated fall risk. Notably, participants with occupationally 
demanding roles demonstrated a significantly flatter fatigue slope (less decline in force), suggesting 
greater fatigue resistance compared with general adult participants (–15.1% vs. –20.7%, p = .004). 

Table 3. Dynamic Grip Metrics from SoundBody 

Metric Mean ± SD 

Fatigue slope (%) –18.6 ± 7.4 

Time-to-peak (ms) 612 ± 184 

Area under the curve (AUC kg·s) 102.3 ± 43.1 

Force variability (CV%) 6.1 ± 2.8 

Asymmetry >10% prevalence 27.9% 

 

 

Figure 3. Example of a SoundBody Force–Time Curve with Dynamic Neuromuscular 

This representative force–time waveform captured by the SoundBody IoT dynamometer displays 
key dynamic metrics including peak force, time-to-peak, fatigue slope, and variability. These features 
provide additional neuromuscular insights unattainable with traditional peak-only hydraulic devices. 

Age-Stratified Patterns in Digital Grip Metrics 

Dynamic grip indices showed stronger age sensitivity than peak force alone. While peak Jamar 
strength declined by approximately 21% from the youngest (20–39 yrs) to the oldest group (60+ yrs), 
fatigue slope demonstrated a steeper age-related deterioration of 38%, and force variability increased 
by nearly 52% across the same age span (p < .001 for all comparisons). These findings suggest that 
dynamic neuromuscular decline may manifest earlier and more prominently than reductions in maximal 
strength. Furthermore, adults aged 60+ showed more than double the prevalence of asymmetry % 
(44.8% vs. 19.3%, p < .001). These results align with existing literature indicating that temporal 
neuromuscular irregularities may serve as early indicators of fall susceptibility and physiological aging 
(Lee et al., 2020; Sari et al., 2025). 
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Predictive Value of Dynamic Indicators Relative to Peak Strength 

Multivariable regression models demonstrated that adding dynamic SoundBody metrics 
substantially improved the prediction of functional risk indicators. A model including only Jamar peak 
strength explained 29% of the variance in age-related functional decline markers, whereas inclusion of 
fatigue slope, variability index, and asymmetry increased the explained variance to 47% (ΔR² = .18, p 
< .001). Principal component analysis identified two dominant components: 

(1) Maximal force capacity, heavily loading on peak-force metrics. 

(2) Dynamic neuromuscular control, dominated by fatigue slope and variability. 

The second component exhibited a stronger association with age, occupational demands, and 
self-reported functional difficulty. These results suggest that dynamic digital indicators capture 
physiologic attributes that are complementary—and in some cases superior—to traditional peak-force 
measurements. 

Discussion 

The present study examined the relationship between traditional hydraulic handgrip assessment 
using the Jamar dynamometer and multidimensional digital measurements obtained through the 
SoundBody IoT Dynamometer. The findings demonstrate three major contributions: (1) strong overall 
agreement between devices despite systematic peak-force underestimation by SoundBody, (2) added 
interpretive value of dynamic neuromuscular indicators uniquely available through digital waveform 
analysis, and (3) evidence that these dynamic metrics exhibit stronger age- and function-related 
sensitivity than conventional peak strength measures. Together, these results support the potential role 
of SoundBody as a viable digital standard for multidimensional handgrip assessment and functional risk 
screening. 

First, the high correlation (r = .87) and strong intraclass agreement observed between SoundBody 
and Jamar measurements confirm that SoundBody can capture peak strength in a manner broadly 
consistent with the established reference standard. However, SoundBody values were consistently 
lower, with a mean bias of –4.9 kg. This downward deviation corresponds with previous research on 
other digital devices such as GripAble, which reported peak values around 69% of Jamar 
measurements due to differences in sensor architecture and dynamometric mechanics (Abdul Mutalib 
et al., 2022; Mace et al., 2022). The proportional bias observed in the current study further suggests 
that discrepancies widen at higher strength levels, a pattern likely related to the hydraulic system’s 
inherent peak-amplifying characteristics compared with load cell–based digital platforms. This 
reinforces the need for calibration models when translating digital peak values into Jamar-based 
normative frameworks or when applying existing diagnostic cut-offs for sarcopenia and frailty (Cruz-
Jentoft et al., 2019; Chen et al., 2020). Nonetheless, the level of agreement observed in this study 
indicates that SoundBody can serve as a practical alternative to Jamar when appropriate calibration 
factors are applied. 

Second, the extraction of dynamic neuromuscular indicators—fatigue slope, time-to-peak, AUC, 
variability, and bilateral asymmetry—represents a substantial advancement beyond the limitations of 
peak-only hydraulic devices. The average fatigue slope (–18.6%) and notable inter-individual variability 
in force modulation highlight the capacity of digital waveforms to reveal neuromuscular characteristics 
not captured by static peak force. These indicators reflect the temporal quality of muscle output, which 
is increasingly recognized as an early marker of physiological decline, impaired neuromuscular 
efficiency, and mobility risk (Lee et al., 2020; Sari et al., 2025). The relatively high prevalence of 
asymmetry (>10%) further underscores the importance of bilateral comparisons in functional screening, 
as asymmetry has been linked to fall risk, gait instability, and early musculoskeletal imbalance. These 
results emphasize that dynamic metrics can complement or even surpass peak strength in detecting 
early neuromuscular impairment. 

Third, the age-stratified analyses demonstrate that dynamic indicators exhibit stronger sensitivity 
to aging than peak-force measures. While peak strength declined modestly across age groups, fatigue 
slope and force variability showed substantially larger age-related deterioration. This suggests that 
neuromuscular coordination and sustained-force capacity degrade earlier and more steeply than 
maximal strength—a finding consistent with emerging theories of neuromuscular aging and motor-unit 
remodeling. These trends further indicate that dynamic IoT-derived indicators may be particularly 
effective in early detection frameworks for sarcopenia, frailty progression, and fall susceptibility. The 
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steeper deterioration in variability and asymmetry among older adults provides additional support for 
including waveform-derived metrics in routine functional assessment and preventive screening. 

The multivariable models further highlight the added predictive value of dynamic digital metrics. 
Incorporating fatigue slope, variability, and asymmetry increased explained variance from 29% (peak 
strength alone) to 47%, demonstrating that dynamic neuromuscular signatures account for functional 
differences not captured by peak force. This supports a multidimensional interpretation of grip 
performance, aligning with contemporary trends toward precision rehabilitation, AI-assisted monitoring, 
and sensor-based functional health analytics. From a practical perspective, the SoundBody platform’s 
ability to collect high-frequency data in real time suggests strong potential for use in clinical, 
occupational, and community health settings—particularly in contexts requiring repeated monitoring or 
feedback-driven rehabilitation. 

Collectively, these findings highlight the importance of transitioning from peak-only handgrip 
assessment toward digital dynamometry that integrates continuous waveform analysis. While Jamar 
remains a valuable benchmark instrument, its inability to capture temporal metrics limits its application 
in modern digital and AI-driven health frameworks. The observed agreement between Jamar and 
SoundBody peak values, combined with the enhanced sensitivity of dynamic metrics, supports the 
development of calibration equations and device-agnostic standards that harmonize traditional and 
digital modalities. Such an approach aligns with international efforts to update functional assessment 
protocols and integrate sensor-based digital tools into clinical guidelines for aging and preventive health. 

Despite the strengths of this study, several limitations warrant consideration. The dataset 
combined multiple pre-existing sources rather than a single controlled sample, and functional outcomes 
such as mobility tests or fall history were not included. Future work should validate these findings in 
prospective cohorts and examine whether dynamic digital metrics predict clinical outcomes such as 
frailty onset, fall events, or occupational injury. Furthermore, device calibration protocols should be 
formalized to support interoperability across digital dynamometers. 

In summary, this study demonstrates that the SoundBody IoT Dynamometer provides reliable 
peak-strength measurements while offering additional dynamic neuromuscular insights unavailable 
through traditional devices. These digital metrics showed superior sensitivity to aging and functional 
decline, supporting SoundBody as a promising digital standard for multidimensional grip assessment. 
Importantly, the integration of high-resolution force–time analytics, digital phenotyping, and cross-
device interoperability positions SoundBody within a scalable digital health infrastructure capable of 
supporting AI-driven functional screening. Establishing harmonized calibration frameworks and 
standardized analytic pipelines will further facilitate clinical translation and widespread adoption of 
digital dynamometry in preventive health screening, occupational assessment, and precision 
rehabilitation systems. 

Conclusion 

This study evaluated the convergence between traditional hydraulic handgrip assessment using 
the Jamar dynamometer and the multidimensional digital measurements obtained through the 
SoundBody IoT Dynamometer. The results demonstrate that, although SoundBody systematically 
underestimates peak strength relative to Jamar, the two devices show strong linear and absolute 
agreement, supporting SoundBody as a reliable alternative for peak-force assessment when 
appropriate calibration procedures are applied. More importantly, the continuous force–time waveforms 
captured by SoundBody provide dynamic neuromuscular indicators—such as fatigue slope, force 
variability, and bilateral asymmetry—that cannot be obtained through conventional peak-only devices. 

These digital indicators exhibited greater sensitivity to age-related decline and functional variability 
than maximal strength, highlighting their potential as early markers of neuromuscular deterioration, fall 
susceptibility, and reduced physiological reserve. Models incorporating dynamic metrics significantly 
improved the prediction of functional risk, demonstrating that temporal features of handgrip 
performance offer complementary clinical value beyond peak force. Taken together, these findings 
support a multidimensional interpretation of grip strength that aligns with contemporary developments 
in digital health, precision rehabilitation, and AI-assisted monitoring. 

The current work also underscores the need for harmonization between traditional and digital 
handgrip modalities. As digital dynamometry becomes more widespread, establishing calibration 
frameworks, device-agnostic standards, and validated analytic procedures will be essential for 
integrating digital measurements into clinical guidelines and population-level screening. SoundBody’s 
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capacity to generate high-resolution neuromuscular profiles positions it as a strong candidate for such 
a digital standard. 

Future research should validate these findings in prospective cohorts, examine longitudinal 
trajectories of dynamic grip metrics, and explore the predictive utility of digital neuromuscular indicators 
for outcomes such as frailty onset, fall events, and occupational injury. Nonetheless, the present study 
provides foundational evidence that IoT-enabled dynamometry can meaningfully enhance 
musculoskeletal assessment, offering broader insights into physiological aging and functional health 
than traditional hydraulic devices alone. These findings underscore the clinical utility of dynamic digital 
assessment and highlight the need for standardized, interoperable frameworks that support population-
level screening and seamless integration into AI-assisted preventive and rehabilitative care. 
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