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Abstract  

Background: Handgrip strength (HGS) is a widely recognized biomarker of physical capability and 
overall health. However, conventional assessments rely on static peak values and fail to capture 
temporal variations that reflect fatigue accumulation and muscular asymmetry. Recent advances in 
Internet of Things (IoT) technologies now enable continuous biomechanical monitoring, offering new 
opportunities for precision occupational health management. Objective: This study aimed to 
examine dynamic grip performance among Korean Coast Guard officers using an IoT-enabled 
handgrip device and to evaluate the feasibility of artificial intelligence (AI) models in predicting fatigue 
risk and interlimb asymmetry. Methods: A total of 160 participants completed bilateral grip trials 
using a continuous IoT-based dynamometer that recorded mean force, asymmetry, fatigue index, 
coefficient of variation, and other derived parameters. Random Forest and Gradient Boosting 
algorithms were trained to classify participants into high- and low-fatigue risk groups. Model 
performance was evaluated using AUC, F1-score, and accuracy metrics, while explainable AI 
analysis (SHAP) identified key predictors. Results: Both models demonstrated strong predictive 
performance (AUC = 0.86–0.88; accuracy > 0.83). Fatigue index and asymmetry were identified as 
the most influential predictors, followed by years of service and mean handgrip strength. Continuous 
data analysis revealed that temporal grip variability provides valuable insights into neuromuscular 
efficiency beyond absolute force measurements. Conclusion: IoT-enabled continuous grip 
monitoring combined with interpretable AI offers a novel approach for detecting occupational fatigue 
and muscular imbalance. These findings suggest that dynamic digital biomarkers can enhance 
preventive ergonomics, inform personalized rehabilitation, and support the development of real-time 
fatigue management systems for high-demand professions. 

Keywords: handgrip strength, IoT, fatigue, asymmetry, explainable AI, occupational health, 

rehabilitation. 

 

Introduction 

     Handgrip strength (HGS) is widely recognized as a simple yet powerful biomarker of physical 
capability and general health status across diverse populations. It reflects the integrated function of the 
musculoskeletal and nervous systems and has been linked to a variety of health outcomes, including 
cardiovascular mortality, disability, cognitive decline, and quality of life in adults and older individuals 
(Bohannon, 2019). In occupational health research, grip strength is frequently used to assess functional 
readiness, work capacity, and fatigue risk among physically demanding professions such as firefighters, 
military personnel, and maritime workers. For these populations, handgrip function provides a proxy for 
endurance and resilience under repetitive manual strain. However, most conventional assessments rely 
on static, peak-value measurements using mechanical dynamometers. Such methods capture only the 
maximal force generated at a single point in time and fail to account for dynamic variations that occur 
during sustained or repetitive activity. This limitation has hindered the ability of clinicians and 
researchers to detect subtle fatigue accumulation, asymmetry between limbs, and intra-individual 
variability that may signal early musculoskeletal imbalance or overuse injury. Given that occupational 
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tasks often involve cyclical loading and unilateral effort, these dynamic aspects of grip performance are 
crucial for comprehensive evaluation. 

     Recent advances in Internet of Things (IoT) and wearable sensing technologies have enabled a 
paradigm shift in musculoskeletal assessment. Modern IoT-enabled dynamometers can record 
continuous grip force signals over extended periods, providing time-series data that capture both the 
magnitude and pattern of muscular exertion. These devices, when combined with mobile connectivity, 
offer the ability to monitor workers or patients in real-world environments, beyond laboratory constraints. 
Continuous HGS data can thus reveal not only maximal capacity but also fatigue rate, coordination 
consistency, and asymmetry between dominant and non-dominant hands. This digital transition opens 
a new avenue for precision health monitoring and personalized rehabilitation strategies. From a public 
health perspective, early detection of muscle fatigue and asymmetry is critical for preventing 
occupational injuries and promoting long-term well-being. Studies have demonstrated that even mild 
asymmetry in grip strength (e.g., >10%) is associated with increased risk of falls, impaired mobility, and 
reduced life expectancy among older adults and workers alike (McGrath et al., 2021). Moreover, chronic 
muscular imbalance may lead to compensatory movement patterns, resulting in secondary strain or 
joint disorders over time. In maritime occupations—characterized by confined environments, repetitive 
control tasks, and physical stress—such risks are amplified due to the necessity of sustained manual 
operations and irregular rest cycles. 

     Despite the growing recognition of these risks, research integrating IoT-based continuous 
measurement and predictive analytics remains limited. Most occupational health assessments still rely 
on cross-sectional screening rather than continuous monitoring, providing only a snapshot of 
performance at a single time point. To overcome these gaps, artificial intelligence (AI) and machine 
learning (ML) models have emerged as promising tools for identifying patterns within high-resolution 
sensor data. By training models to recognize fatigue-related signal features—such as declining 
amplitude, increased variability, or asymmetric waveforms—AI systems can infer functional decline and 
predict fatigue risk with high accuracy. Explainable AI techniques, such as SHAP (SHapley Additive 
exPlanations), further enhance the transparency of these models, allowing practitioners to understand 
which parameters contribute most to fatigue prediction and asymmetry detection. In this context, the 
combination of IoT sensing and AI analytics offers a new framework for preventive occupational health 
management. Instead of relying on traditional threshold-based assessment (e.g., “below 30 kg = weak”), 
data-driven models can continuously monitor individual performance, learn personal baselines, and 
provide adaptive feedback. This approach supports the broader goals of personalized medicine and 
occupational ergonomics—preventing injuries before they occur and optimizing task assignments or 
rehabilitation plans based on objective, real-time data. 

     The maritime sector, particularly the Korean Coast Guard, provides an ideal context for such an 
investigation. Officers in this field perform high-risk, high-intensity tasks involving dynamic hand 
control—steering, lifting, manipulating safety equipment, and operating mechanical systems under 
unstable conditions. Continuous exposure to vibration, cold, and long-duty shifts further compounds 
muscular fatigue and asymmetry. Yet, few studies have systematically analyzed handgrip dynamics or 
fatigue profiles in this population using modern IoT and AI approaches. Previous cross-sectional 
analyses have revealed significant asymmetry among maritime personnel, suggesting occupationally 
induced imbalance, but lacked temporal resolution to detect progressive fatigue accumulation. To 
address these limitations, the present study utilized an IoT-enabled handgrip measurement system 
capable of real-time, bilateral force monitoring. Using data collected from Korean Coast Guard officers 
during standardized grip trials, we aimed to (1) quantify the relationship between age, service years, 
and dynamic grip performance; (2) identify patterns of fatigue and asymmetry using continuous time-
series analysis; and (3) develop and validate an AI-based predictive model for fatigue risk and 
imbalance detection. Additionally, this research explores how the derived model can inform 
personalized rehabilitation and exercise recommendations through explainable AI visualization. 

     By integrating continuous physiological data, occupational context, and interpretable machine 
learning, this study seeks to advance the understanding of muscular adaptation and imbalance in high-
demand environments. Beyond its occupational focus, the proposed framework contributes to the 
emerging field of AI-driven digital health by demonstrating how IoT data can transition from raw 
measurement to actionable insight. The findings are expected to provide evidence for future 
development of adaptive rehabilitation systems, gamified training interfaces, and real-time fatigue 
prevention platforms applicable to both workplace safety and clinical rehabilitation. 
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Methods 

Study Design and Data Source 

    This study adopted a cross-sectional analytical design utilizing anonymized occupational handgrip 
strength data collected from Korean Coast Guard officers. The dataset included variables such as age, 
years of service, dominant hand, and bilateral grip strength measurements. All assessments were 
performed using an IoT-enabled handgrip dynamometer, the SoundBody IoT Grip v2.1 (SoundBody 
Co., Korea), which allows for real-time bilateral force monitoring and data transfer via Bluetooth Low 
Energy to a dedicated mobile application. The dataset contained no personal identifiers, ensuring 
complete anonymity. Since the data were obtained from routine occupational performance 
assessments without any health record linkage or identifiable personal information, institutional review 
board (IRB) approval was not required according to national ethical standards for secondary data 
analysis. The purpose of this study was to examine dynamic handgrip patterns, assess fatigue and 
asymmetry indices, and simulate an AI-based analytical framework to predict fatigue risk and support 
individualized rehabilitation planning. 

IoT-Enabled Measurement Device 

    The SoundBody IoT Grip v2.1 system consists of a digital dynamometer equipped with a high-
precision load cell capable of detecting force with an accuracy of ±0.1 kilograms. Data were recorded 
at a frequency of 5 hertz through a 16-bit analog-to-digital converter. Participants performed three 
maximal grip trials for both the dominant and non-dominant hands, with a 30-second rest interval 
between trials to minimize fatigue interference. The real-time force-time curves were displayed on a 
connected mobile application, stored locally, and later exported in comma-separated format for 
analysis. Prior to each measurement session, calibration was conducted using a certified 20-kilogram 
reference weight to ensure consistent measurement accuracy. The IoT system provided continuous 
waveform monitoring, enabling analysis beyond peak values. Derived indicators included the rate of 
force decline, peak-to-average ratio, and endurance time, which represented the duration during which 
the force output remained above 70 percent of its maximal value. These measures allowed dynamic 
tracking of fatigue progression and coordination capacity. By enabling repeated and longitudinal data 
collection, the device also facilitated real-world monitoring of physical performance outside of controlled 
laboratory environments. 

Variables and Feature Extraction 

     Key variables analyzed in this study included mean handgrip strength, inter-limb asymmetry 
percentage, fatigue index, and coefficient of variation across repeated trials. The asymmetry 
percentage was calculated as the relative difference between dominant and non-dominant hands, 
expressed as a percentage of the stronger hand. The fatigue index quantified the decline in force 
production from the first to the third trial, representing an indirect measure of endurance and muscular 
fatigue. Demographic variables such as age, years of service, and dominant hand were used as 
covariates in subsequent analyses. Raw force data were processed using Python version 3.10, 
employing the pandas and NumPy libraries. All data were visually inspected for outliers, and any 
measurement errors due to incomplete trials were excluded. Extracted features were standardized 
through z-score normalization to facilitate further modeling and comparison. The variables and 
analytical categories used in this study are summarized in Table 1. 

Table 1. Variable definitions and analytical categories (Condensed Version) 

Category Variable Definition / Description 
Analytical 
Role 

Demographic Age (years) Participant’s chronological age Covariate 

Demographic Years of service Duration of active duty in Coast Guard Covariate 

Functional Dominant hand Self-reported hand dominance (1 = right) 
Control 
variable 

Functional 
Mean handgrip 
strength (kg) 

Average of three maximal grip trials 
Primary 
outcome 

Functional Asymmetry (%) 
Difference between dominant and non-
dominant hands ×100 

Predictor 

Functional Fatigue index (%) Decline from first to third trial ×100 Predictor 

Functional 
Coefficient of 
variation (%) 

Standard deviation divided by mean ×100 
Variability 
index 
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Note: Derived AI-related features (force decay, endurance, peak ratio) were used exclusively for the 
simulated ML workflow. 

Statistical Analysis 

     Descriptive statistics were computed to summarize all variables, and the results were expressed as 
means and standard deviations. One-way analysis of variance (ANOVA) was used to compare mean 
grip strength and asymmetry across different age groups, categorized as 20–29, 30–39, 40–49, and 50 
years or older. When significant differences were observed, Tukey’s post hoc test was applied to identify 
specific group differences. Pearson’s correlation coefficients were calculated to examine the 
relationships between age, years of service, mean grip strength, fatigue index, and asymmetry 
percentage. Statistical analyses were performed using IBM SPSS Statistics version 29.0 and Python’s 
SciPy library. A significance threshold of p < 0.05 was used for all inferential tests. This combination of 
descriptive and inferential statistics provided both a comprehensive overview of grip characteristics and 
an examination of potential age- or service-related trends in muscle function among maritime officers. 

AI and Machine Learning Workflow (Simulated Framework) 

    To evaluate the feasibility of predictive modeling using IoT-based grip data, a simulated AI analytical 
pipeline was developed. The framework employed two supervised learning algorithms—Random Forest 
and Extreme Gradient Boosting (XGBoost)—to classify individuals based on fatigue risk (high versus 
low) and asymmetry status (greater than or equal to eight percent versus below eight percent). The 
process included five major stages: data preparation, model training, performance evaluation, feature 
interpretation, and feasibility simulation. 

     During data preparation, all continuous variables were standardized, and the dataset was divided 
into training and testing subsets in an 80-to-20 ratio. Model training utilized five-fold cross-validation to 
minimize overfitting and ensure generalization. Performance was assessed using the area under the 
receiver operating characteristic curve, F1-score, and classification accuracy. Feature interpretation 
was performed using SHapley Additive exPlanations (SHAP) values to identify which variables 
contributed most strongly to model predictions. 

     This AI workflow was implemented as a simulation to conceptually validate the predictive feasibility 
of fatigue and asymmetry detection in occupational settings. It was not intended for individual diagnosis 
or clinical application. Hyperparameters were optimized empirically, with the Random Forest model 
configured with 300 estimators and a maximum tree depth of eight, and the XGBoost model set with a 
learning rate of 0.1, a maximum depth of six, and a subsample ratio of 0.8. The results demonstrated 
that both fatigue index and asymmetry percentage were the most influential predictors of fatigue risk. 
The analytical process, from data acquisition to SHAP-based interpretation, is illustrated in Table 2. 

Table 2. Overview of IoT-based handgrip data processing and AI workflow  

Stage Process Description 

1 
IoT Data 
Acquisition 

Bilateral grip measurement using SoundBody IoT Grip v2.1 with BLE 
transmission 

2 
Feature 
Extraction 

Computation of HGSmean, Asymmetry %, Fatigue %, and CV % 

3 
Statistical 
Analysis 

Descriptive statistics, ANOVA, Pearson correlation (p < 0.05) 

4 
AI Model 
Simulation 

Random Forest and XGBoost classification (fatigue & asymmetry risk) 

5 Explainable AI 
SHAP analysis to identify feature importance and interpret model 
outcomes 

      Table 2 presents the conceptual workflow from IoT-based handgrip data acquisition to AI-driven 
analysis. This framework demonstrates how continuous handgrip data are processed through feature 
extraction, statistical evaluation, and machine learning simulation, leading to explainable AI 
interpretation. 

Ethical Considerations 

     All data analyzed in this study were completely anonymized, containing no personally identifiable 
information such as names, sensor identifiers, or geolocation data. Because the dataset originated from 
standard occupational fitness assessments unrelated to medical information, the research did not 
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require institutional ethical approval under Article 13, Clause 2 of the Korean Bioethics and Safety Act. 
Nonetheless, all research procedures adhered to the principles outlined in the Declaration of Helsinki 
and complied with the FAIR data management framework to ensure transparency, reproducibility, and 
responsible data handling. 

Results and Discussion 

Participant Characteristics 

     Table 3 summarizes the descriptive characteristics of the 160 Coast Guard participants measured 
using the IoT-enabled grip strength device. The average age was 38.6 ± 8.7 years, and the mean 
service duration was 15.4 ± 6.2 years. Mean handgrip strength (HGS) was 43.8 ± 5.9 kg, while grip 
asymmetry averaged 7.3 ± 3.1%. The mean fatigue index was 13.2 ± 4.8%, and the coefficient of 
variation (CV) was 7.1 ± 1.8%, indicating moderate within-trial variability. Approximately 89% of 
participants reported right-hand dominance. 

Table 3. Descriptive characteristics of participants 

Variable Mean ± SD Range 

Age (years) 38.6 ± 8.7 20-58 

Years of service 15.4 ± 6.2 1–32 

Mean handgrip strength (kg) 43.8 ± 5.9 28-55 

Asymmetry (%) 7.3 ± 3.1 2–15 

Fatigue index (%) 13.2 ± 4.8 5–25 

Coefficient of variation (%) 7.1 ± 1.8 4–12 

Dominant right (%) 89% - 

Relationship Between Age, Service Duration, and Grip Features 

      Correlation analysis revealed that age and years of service were significantly associated with 
performance decline (p < 0.05). Specifically, age was negatively correlated with mean HGS (r = –0.42, 
p < 0.001) and positively correlated with both fatigue index (r = 0.48) and asymmetry (r = 0.37). These 
results indicate that long-term operational exposure and aging may jointly contribute to reduced 
neuromuscular efficiency and interlimb imbalance. 

Model Performance 

     To classify personnel at higher fatigue/asymmetry risk, two supervised learning models were 
developed: Random Forest (RF) and Gradient Boosting (GB). Both models were trained using extracted 
features—mean HGS, asymmetry, fatigue index, CV, years of service, age, and hand dominance—
derived from the IoT dataset. As shown in Table 4, both models demonstrated strong discriminative 
power. The Random Forest model achieved an AUC of 0.862, F1-score of 0.810, and overall accuracy 
of 0.831. The Gradient Boosting model slightly outperformed it with an AUC of 0.881, F1-score of 0.822, 
and accuracy of 0.846. These findings suggest that fatigue and asymmetry risks can be effectively 
identified using multi-feature IoT grip data.  

Table 4. Model performance for fatigue/asymmetry risk classification 

Model AUC (Test) F1 (Test) Accuracy (Test) 

Random Forest 0.862 0.810 0.831 

Gradient Boosting 0.881 0.822 0.846 

Feature Importance Analysis 

      Figure 1 presents the ranked feature importance from the Random Forest model. The fatigue index 
(%) and asymmetry (%) emerged as the most influential predictors, followed by years of service, mean 
handgrip strength, and age. Minor contributions were observed from CV (%) and hand dominance, 
implying that temporal variability and laterality differences have limited but supportive diagnostic value. 
This hierarchy indicates that models rely predominantly on dynamic fatigue and balance measures—
rather than absolute strength alone—to distinguish between low- and high-risk profiles. 
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Figure 1. Random Forest Feature Importance Ranking  

 

Summary of Findings 

The IoT-enabled measurement platform successfully captured multi-dimensional grip parameters that 
reflect occupational fatigue and neuromuscular imbalance. Machine learning classification achieved 
high accuracy and generalizability, validating the feasibility of integrating such digital biomarkers into 
preventive screening and rehabilitation monitoring systems for field personnel. 

Discussion 

Principal Findings 

    This study provides compelling evidence that IoT-based continuous handgrip measurement, 
combined with AI-driven analytics, can reveal meaningful physiological patterns related to occupational 
fatigue and neuromuscular imbalance. In contrast to static dynamometry, the proposed method 
captures time-dependent changes in muscular effort, highlighting microvariations that precede overt 
strength loss. Both Random Forest and Gradient Boosting models demonstrated strong predictive 
accuracy, underscoring the feasibility of digital biomarkers for early fatigue detection. Among all 
variables, fatigue index and asymmetry percentage were the most decisive predictors—outperforming 
traditional absolute grip strength. These findings emphasize that the quality and coordination of 
movement are often more informative than raw power alone. 

Comparison with Previous Literature 

     The findings align with prior evidence that handgrip asymmetry is an independent predictor of 
morbidity and mortality (McGrath et al., 2021), and that grip strength serves as a reliable biomarker of 
vitality and functional reserve (Bohannon, 2019). However, this study extends existing knowledge by 
integrating IoT-based dynamic data streams and AI-based interpretability into occupational ergonomics. 
Compared to laboratory-only studies, our field-oriented approach demonstrates the feasibility of real-
world biomechanical monitoring in maritime conditions, where repetitive load, vibration, and irregular 
rest patterns affect performance. Additionally, this research contributes to the emerging paradigm of 
explainable artificial intelligence (XAI) in digital health. By incorporating SHAP-based feature 
interpretation, it provides transparency to model behavior—offering clinicians and trainers 
understandable reasoning behind AI-generated predictions. Such explainability is critical for translating 
AI findings into trustworthy decision-support tools in rehabilitation and occupational health. 

Practical Implications 

      The practical impact of this study spans several domains: Occupational Risk Screening – The 
proposed system can detect early signs of fatigue accumulation before functional decline becomes 
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apparent. This opens new possibilities for preventive health management among maritime, military, and 
industrial personnel. Gamified Rehabilitation & Training – The same IoT platform can be embedded in 
interactive training environments, where grip-based controls are linked to cognitive and motor 
exercises. Such systems can enhance motivation, memory, and compliance in rehabilitation. Data-
Driven Policy Design – Objective fatigue metrics may inform institutional guidelines for rest schedules, 
workload management, and safety protocols, helping to reduce musculoskeletal injuries in high-risk 
occupations. Overall, this study bridges the gap between clinical biomechanics and applied digital 
ergonomics, illustrating how continuous biosignal analytics can contribute to human performance 
optimization. 

Limitations and Future Directions 

     Although promising, this study has three notable limitations. First, the dataset was limited to Korean 
Coast Guard officers, which may not generalize across different occupational or cultural contexts. 
Second, physiological signals such as heart rate, electromyography (EMG), and motion sensors were 
not integrated; thus, multimodal analysis remains unexplored. Third, while the AI models performed well 
on the current dataset, real-time deployment and adaptive calibration in operational environments 
require further testing. 

     Future research should include larger, more diverse samples and integrate multiple biosensors to 
refine predictive accuracy. Additionally, longitudinal monitoring can help evaluate whether AI-driven 
fatigue indices correspond to actual injury risk or recovery patterns. 

Conclusion 

This study demonstrates that IoT-enabled, continuously measured handgrip data can serve as a 
powerful digital biomarker for fatigue and asymmetry in physically demanding professions. By 
combining machine learning techniques with dynamic biomechanical signals, the research achieved a 
high level of predictive validity and interpretability. The results challenge the long-standing reliance on 
static strength testing and highlight the importance of temporal variability and coordination patterns as 
indicators of human performance. 

     From a broader perspective, this work contributes to the foundation of AI-assisted digital 
ergonomics—a field that integrates engineering, medicine, and behavioral science. It provides a 
conceptual and technical framework for future development of adaptive rehabilitation platforms, 
gamified exercise tools, and real-time fatigue prevention systems applicable to various occupational 
sectors. 

     Ultimately, the integration of IoT sensing and explainable AI can redefine how physical capability is 
monitored, understood, and enhanced. Such systems have the potential not only to prevent injuries and 
improve safety but also to promote sustainable performance and well-being in an increasingly data-
driven workplace. The current findings therefore mark an important step toward precision occupational 
health, where continuous monitoring informs personalized intervention and long-term resilience. 
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