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Abstract

Fraud detection (FD) in financial transactions involves identifying and preventing unauthorized or
suspicious activities to safeguard financial systems and customer assets. However, traditional fraud
detection approaches in financial transactions often fall short due to their reliance on predefined
rules and static thresholds, which limits their capability to adapt to evolving fraud patterns and detect
sophisticated or emerging threats effectively. To address the challenges in traditional FD methods,
this paper proposes an advanced machine learning-based model, Enhancing Financial Security
through the Integration of Machine Learning methods for Effective Fraud Detection in Transaction
Systems (EFS-IML-EFD-TS). Initially, input data is gathered from the Financial Fraud Detection
Dataset. The collected data is first pre-processed utilizing the Confidence Partitioning Sampling
Filtering (CPSF) technigue to handle missing values, remove duplicate records, and standardize
feature scaling. The pre-processed data is further processed using the Exponential Distance
Transform (EDT), which extracts discriminative features like transaction amount, time of day, and
location.Then, the imbalanced data is balanced using Adaptive Support Vector-Borderline SMOTE
(ASV-SMOTE), which generates high-quality synthetic samples near decision boundaries, reducing
noise and improving minority class prediction. Then Interpretable Generalized Additive Neural
Network (IGANN) is used to detect fraud and classify financial transactions as either genuine or
fraudulent. The proposed EFS-IML-EFD-TS method achieves 98.5% precision, 98% accuracy, 97%
recall, 97.5% F1-score, 0.91 MCC, a high AUC of 0.9636, low loss of 0.05, and the shortest
computational time of 1.125 seconds, compared with existing methods such asOnline payment fraud
detection model utilizing machine learning techniques (OPFT-MLT-ANN),Financial Fraud Detection
utilizing Value-at-Risk with Machine Learning in Skewed Data (FFD-MLSD-DNN), andTransparency
and privacy: the role of explainable Al and federated learning in financial fraud detection (TP-Al-
FFD-DNN).

Keywords: Fraud detection,Financial Security, Interpretable Generalized Additive Neural
Network,Confidence Partitioning Sampling Filtering, Exponential Distance Transform, Transaction
Systems.

Introduction

As online payment systems and e-commerce have grown in popularity, financial transactions have
become more digital, leading to a rise in fraudulent activities [1]. Although incidents like unauthorized
purchases and counterfeit cards represent a smaller portion of fraud cases, they result in a
disproportionate share of financial losses [2]. In response to this growing concern, both government
organizations and private businesses have significantly increased their investments in developing more
robust fraud detection systems [3]. These systems are essential in identifying and preventing fraudulent
transactions, thereby reducing financial losses [4]. Their efficacy is crucial for boosting security and
building confidence in online financial transactions [5].

The data imbalance, where suspect transactions are far less likely than legitimate transactions, is
the first of many challenges for fraud detection systems [6]. In addition to the issue of data imbalance,
different misclassifications can come with different costs, with false positive instances leading to major
financial fallout [7]. In addition, fraud detection systems must take into account temporal dependencies,
meaning that they understand the relationships between the events based on time [8]. Temporal
dynamics bring a challenge related to concept drift, meaning that the model must be updated regularly
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to remain as accurate as possible, since the types of fraud change over time [9]. Finally, the high
dimensionality of data necessitates sophisticated tools to manage and analyze vast swathes of
transaction data [10].

To mitigate the effects of imbalanced datasets, one solution is to modify the class weights during
model training to elevate the significance of fraudulent transactions [11]. Cost sensitivity can be
managed utilizing cost-sensitive learning strategies that guarantee the model penalizes
misclassifications based on their financial implications [12]. Next, temporal dependencies can be
accommodated by using time-series analytics that think about the sequence and timing of transactions
[13]. Online learning techniques can combat concept drift, allowing the model to learn from recent data
as trends replicate over time [14]. Finally, dimensionality can be lowered through feature engineering
or strategies like principal component analysis (PCA), which can enable the retention of only the most
significant features in fraud detection [15].

Literature Survey

Previous literature has presented a number of works that rely on the detection of fraud in financial
transactions. Only a handful of them were highlighted here,

A. A. Almazroi andNasirAyub [16] have presented for processing financial transaction data, a novel
artificial intelligence method called the ResNeXt-embedded Gated Recurrent Unit (GRU) model (RXT)
was created. The growing threat of financial fraud, which presents significant risks to both consumers
and financial institutions, was addressed methodically by Al technology. Data input and preprocessing
were the first steps in the process, after which the SMOTE technique was used to address data
imbalance. Use an ensemble Al technigue for feature extraction that reveals important data patterns
by combining autoencoders and ResNet (EARN). This method's drawback was that it might need a lot
of time and computing power to train, particularly when dealing with big datasets.

A. U.Usmanet al. [17] have presented an approach that tackles the skewness and rarity of fraud
cases in machine learning (ML) models in order to detect new bank account (NBA) fraud. Traditional
methodologies neglect potential losses to more effectively explore fraud tendencies. The use of fraud
as a worst-case scenario incorporates the use of value-at-risk (VaR) as a risk measure. VaR models
potential losses as a skewed tail distribution and can be estimated using historical simulation. The BAF
dataset was utilized with ML to classify risk-return characteristics which were based on VaR. A
drawback to this method was it may not effectively account for new fraud trends, as it relies heavily on
historical data and prescriptive risk measures.

T.Awosikaet al. [18] have presented a method to detect fraudulent transactions, which was a big
concern for financial institutions. The approach focuses on the need for address the imbalance in
transaction datasets since there were few instances of fraudulent transactions as compared to
legitimate transactions, one limitation of this approach was the potential inability to detect new or
changing fraud trends that may not be apparent in the training set.

Y. Cuiet al. [19] have presented a novel approach to adaptive and context-aware financial fraud
detection that incorporates Graph Neural Networks (GNNs) and Reinforcement Learning (RL). The
approach constructs a dynamic graph model for financial transactions, whereby transactions were
nodes, whereas users and merchants were edges. The model introduced a novel GNN architecture,
called Temporal-Spatial-Semantic Graph Convolution (TSSGC), to extract spatial relationships,
temporal patterns, and semantic information from transaction data. The RL component was
implemented as a Deep Q-Network (DQN), which allowed the model to minimize detection costs while
having the capacity to adapt to changing patterns of fraud by adjusting the threshold for acceptable
fraud detection and importance of features. This method's drawback was that it might take a lot of time
and computing power to train, especially when dealing with big transaction datasets.

M. A. Talukderet al. [20] have presented a solution for detecting fraudulent transactions in financial
institutions, specifically targeting credit card fraud. Early detection plays an important role in preventing
further losses. The process involves thorough investigation of alerts; however, due to time constraints,
only a limited number of warnings can be reviewed each day, which may impact the overall detection
efficiency.A disadvantage of this approach was that the limited number of alerts that can be reviewed
daily may result in delayed detection of some fraudulent transactions.

K. Singhet al. [21] have presented a safe, automated computer system for detecting financial
transaction fraud. The purpose of this system was to safely process and examine transaction data,
spot irregularities, and send out warnings about possible fraud. To guarantee data protection, it
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integrates a number of security measures, including encryption, data obfuscation, and access controls.
A disadvantage of this approach was that implementing multiple security mechanisms may increase
processing time and system overhead.

Y. Tang andZ. Liu [22] have presenteddistributed knowledge distillation architecture for financial
fraud detection. The method uses feed-forward neural networks to extract high-level relevant features
after assigning weights to features using a multi-attention mechanism. Neural networks were then used
to categorize financial fraud, improving detection accuracy, inference speed, and generalization ability
for better decision-making in financial institutions. A disadvantage of this approach was that it may
require significant computational resources to process and distill large datasets effectively. Table 1
presents the literature survey’s summary.

Table 1: Literature survey’s summary.

Ref Algorithm Advantage Disadvantage
A. A.
Almazroi Artificial  Neural Effectively detects High computational
andNasirAyub Network (ANN) complex fraud patterns. cost and training time.
[16]
. Limited in detecting
A. U.Usman Deep Neural Enhanc_es dgtec_tlon _by new fraud patterns due to
assessing financial risk with . -
[17] Network (DNN) reliance on historical
VaR. data
T.Awosika Deep Neural Improves detection by Struggles with new or
[18] Network (DNN) handling data imbalance. evolving fraud patterns.
Y. Cui [19] Graph Neural Adapts to evolving fraud High computational
) Network (GNN) with dynamic graph and RL. | cost and training time.
Enables early detection Limited alert reviews
M. A. Artificial  Neural of credit card fraud to | PE" day may delay
Talukder [20] Network (ANN) detection of some fraud
prevent further losses. cases
K. Singh Deep Neural Provides secure fraud Slower  processing
[21] Network (DNN) detection. due to security overhead.
Y. Tang Graph Neural s eeEdnhaanndceZneraﬁ;gEcr)iciﬁ Requires high
andZ. Liu [22] Network (GNN) frFa)lud (;ietect?on computational resources.

Despite significant advancements in machine learning for financial FD, current methods still face
challenges in performance, computational efficiency, and adapting to evolving fraud patterns.
Techniques like ANN, GNN, and DNN are widely used, but often have very high computational
complexity, and thus are less efficient when dealing with large data sets. Historical data is a key part of
these models, and as such generally less effective when trying to identify fraud with a new technique
against a known fraud model. Additionally, issues such as data imbalance and time to FD limit the
system's overall effectiveness. All of these aspects highlight the need for a FD system with a more
operational flexible, scaleable, and efficient. The goal would be to make use of the data in order to
identify new fraud patterns quickly and accurately without having to reload the model, and at a level of
computational complexity that is not prohibitively expensive. It is with these considerations in mind that
this work develops a FD system that quickly accounts for new activity, uses lower computational
resources, and achieves adaptive learning to effectively detect financial fraud in large volume.

In this paper, the EFS-IML-EFD-TS method is proposed to improve fraud detection (FD) in financial
transactions while overcoming the problems of traditional rule-based systems. It begins with data
preprocessing using the CPSF technique to remove and handle null values, remove duplicates, and
standardize features. ASV-SMOTE creates artificial samples in the vicinity of decision boundaries and
provides methods to improve minority class detection and to solve data imbalance. EDT is used to
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extract important features like transaction amount, time, and location. The IGANN model performs
classification, correctly differentiating between legitimate and fraudulent transactions. The technique
ensures effective fraud detection with few false positives by achieving high precision, recall, accuracy,
F1-score, MCC, AUC, low loss, and quick computation time.

Important contribution of this research work is bridged below,

= In this research, Enhancing Financial Security through the Integration of Machine Learning
Models for Effective Fraud Detection in Transaction Systems (EFS-IML-EFD-TS) is proposed.

= CPSF effectively pre-processes financial transaction data by addressing missing values,
removing duplicates, and standardizing data for consistent and reliable input.

= IGANN interpretability into the classification process, making the method’s decisions more
transparent and suitable for financial environments that require accountability and compliance.

= The obtained results of the proposed EFS-IML-EFD-TS algorithm are compared with existing
models such as OPFT-MLT, FFD-MLSD, and TP-Al-FFD, demonstrating superior performance
across all metrilcs.

The balance paper is ordered as follows: Part 2 displays the proposed method, Part 3 displays the
results and discussion, Part 5 concludes the paper.

Proposed Methodology

In this sector, the plan for EFS-IML-EFD-TS is outlined. Primary activities entail obtaining input data
from a Financial FD dataset, containing a variety of transaction-related properties. The naive data is
then preprocessed using a Confidence Partitioning Sampling Filter (CPSF) to treat missing values, to
remove duplicates, and to normalize the factors of the input data. The data after preprocessing then
goes to an Exponential Distance Transform (EDT) for feature extraction. The important features are the
transaction amount, time, location, merchant category, and information about the recipient. The final
dataset of features is then used as an input into an Interpretable Generalized Additive Neural Networks
(IGANN) for classification of the transactions, ultimately classifying the transaction as genuine or
fraudulent. IGANN uses the differentiation of features, informing back to a user understandable process
of modelling complex relations present in the data, allowing for clear and accurate decision making. It
aims to improve the efficiency of the process training the model, while improving the accuracy in
detecting fraud, while maintaining the objective of using informative elements of the process, ideally
equate to a lower overall accuracy output cost. This consolidated process is illustrated in Fig. 1. It
indicates the proposed EFS-IML-EFD-TS model.
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Fig 1: Block Diagram of the proposed EFS-IML-EFD-TS

Data Acquisition

The input data was derived from a dataset created for the purpose of financial fraud detection from
commonly using credit card transactions, digital payment platforms and across multiple financial
institutions. This dataset is prevalent for machine learning model evaluations and establishment in the
detection of fraudulent financial activities. In addition to a binary label that indicates whether or not a
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transaction was fraudulent, the dataset offers through its labeled records adequate labeled amounts
and contains information that includes transaction amounts, transaction time, transaction location,
merchant category, device id, and anonymized customer information. The original dataset consisted of
over 500,000 transactions, and following pre-processing and addressing class imbalance through the
use of SMOTE, addressing of missing values, removal of duplicate records, and normalization of
numerical features. The following cleaning, the dataset was 100,000 well-defined records, in which were
split into 15% validation set, 70% training set, and 15% test set, to maximize the effectiveness of the
model while maintaining balance.

Pre-processing utilizing Confidence Partitioning Sampling Filtering (CPSF)

In this section, we discuss pre-processing with CPSF [25]. It is applied to manage missing data,
standardizing the scale of data, and excluding duplicate records. The CPSF model is employed both in
data selection and in model training, maximizing learning efficiency and reliability by partitioning the
samples into five separate partitions based on the level of certainty, sampling the informative instances,
and filtering out the more uncertain or noisy data. It maximizes model performance by only using the
inputs that have been determined to be of the highest quality, reduces training time and improves
robustness with respect to data imbalance or noise. In fraud detection pre-processing, a high-probability
region is defined to represent normal transaction behavior, which helps handle missing data by ensuring
imputations stay within typical value ranges, as expressed as equation (1).

as [a(y)dy=1-4

DY

a(y) (1)

Here, a:s define the cloud resources, a(y) define the labelling technique, B define the edge
Vv
computing system, dy define the gray matrix and a(¥) define the resource consumption. To
standardize data scaling in fraud detection, normalized weights are assigned to data points based on
their probability, emphasizing typical transaction behavior, as expressed as equation (2).

q(y;)

(AU @)

Here, “1 represents the weight probability assigned to a transaction sample in effective fraud

detection systems, a(yi) defines the test model, and F represents the state covariance matrix, which
tracks subtle behavioural changes to enhance intelligent response accuracy. CPSF standardizes input
dimensions, reduces computational load, maintains data consistency, and balances speed and quality
efficiently. The CPSF method is used for removing duplicate records in Equation (3),

p(Y) aa!irrﬂozrfla),é (Y -Y, ) o

Here, 7 indicates the sampling interval indicates data collection frequency, 5() represents
standardizing data scaling ensures consistent feature ranges, focusing on key transaction traits, and

p(Y) represents the probability density function helps detect fraud anomalies. Finally, the CPSF
method handles missing data, removes duplicate records, and standardizes data scaling. Next, the data
balancing system receives the pre-processed data.

Data balancing using Adaptive Support Vector -Borderline SMOTE (ASV- SMOTE)

In this segment, Data balancing using Adaptive SV-Borderline SMOTE (ASV- SMOTE) [24] is
discussed. Unbalanced data is balanced using the ASV-SMOTE.ASV-SMOTE was preferred over
SMOTE, Borderline-SMOTE, and ADASYN due to its use of support vectors to focus on informative
borderline instances, reducing noise and improving sample quality. By adaptively generating synthetic
data near critical decision boundaries, it enhances minority class prediction and reduces overfitting,
making it ideal for sensitive tasks like fraud detection and medical diagnosis.The kernel-based squared
distance aids ASV-SMOTE in handling imbalanced fraud data, as expressed in equation (4).

536



Architectural Image Studies, ISSN: 2184-8645

d*(x,x, F = K(x, %, )-2K(x,,x, )+ K(x,x,)

(4)

d?(x,x. f . XX .

Where, ( : ‘) represents the distance between points ' and ! in the feature space induced
X, X : . KX, X: ). . : ,

by the kernel 4 , "1/ represents input data points, """ Vindicates as Kernel function measuring

similarity between X and " !in the original input space.ASV-SMOTE uses feature-space interpolation
in convex regions to generate synthetic samples for fraud detection, as expressed in equation (5).

(p(XIJ >= (P(Xi )+ 5clij ((p(Xj )_ ¢(Xi )) (5)
5y
Where, ~ 9 represents random number, inward generation creates the newly synthesized sample,
- . X, b . .
which is then situated between Xi and !, and o is between O’l.lt combines real and synthetic data

in a kernel model to enhance fraud detection on imbalanced datasets, as expressed in equation (6).

f(x)=sgn {ZLO‘K(X’ X; )+ z’j\l:+NP+laj K (x, %)+ b} ©

- - . . . a.
Where, f(X) indicated as the output of the decision function at input X % and ! are the
coefficients corresponding to the training points respectively. Finally the ASV-SMOTE performs
balanced from imbalanced data and then the balanced data are given to feature extraction.

Feature extraction using Exponential Distance Transform (EDT)

In this sector, Feature extraction utilizing Exponential Distance Transform (EDT) [26] is discussed.
It is used to extract discriminative features like transaction amount, time of day, location, merchant
category, and recipient information. EDT is employed in image processing and computer vision to
enhance spatial awareness and feature representation by applying an exponential decay to distance
values from key structures. Itimproves accuracy and robustness by prioritizing nearby, relevant features
while reducing the influence of distant or noisy regions. EDT enables smoother transitions, supports
edge-aware operations, and integrates well with machine learning models due to its differentiable
nature.The minimum distance between a data point and reference points is used to extract
discriminative features like transaction amount during feature exploration in fraud detection, as
expressed in equation (7).

DT(x,y)= min\/(x—xi)2 +(y-y,)

, where iel (7)

Here, | indicates all irrelevant patterns in the transaction dataset, (X’ y)represent the coordinates

of a transaction in the system, and (Xi ! yi)represent the coordinates of transaction amount features.
EDT improves fraud detection by accurately mapping transaction amounts, thereby enhancing the
extraction of relevant features even in noisy or manipulated financial records. The merchant feature is
extracted in equation (8),

1

IDT = —F———
DT (x,y)+C

(8)
Here C represents a constant introduced to prevent computational errors, DT represents the time
difference from that transaction to a reference time point. EDT aids in handling temporal noise,

improving the reliability of fraud detection by preserving essential time-based transaction patterns. The
time feature is extracted in equation (9)

1

FIDT =
DT (x,y)* """ +.C

)
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In order to improve the assessment of recipient patterns, the distance function in the IDT is used to
exponentiate the primary term. This enhances fraud detection by identifying anomalies in recipient
information, which are often indicative of unauthorized or suspicious transactions. Lastly, EDT extracts
discriminative features like recipient information, merchant category, location, time of day, and
transaction amount. The classification model is then fed the feature extraction.

Classification Using Interpretable Generalized Additive Neural Network (IGANN)

In this segment, Classification utilizing IGANN [27] is discussed. IGANN is employed to detect fraud
and classify the financial transaction as Genuine and Fraudulent. IGANN can be applied to enhance
credit risk evaluation by modeling feature-wise non-linear relationships in a transparent and
interpretable way. IGANN learns the individual effect of each financial indicator, such as income, credit
score, and debt ratio, on the risk prediction outcome. By providing clear visualizations of how each
feature contributes to the credit decision, IGANN enables financial institutions to maintain high accuracy
while ensuring model transparency and regulatory compliance.The linear component and nonlinear
functions in a neural network are used to classify financial transactions in fraud detection, as expressed
in equation (10).

L
§=(a,x)+b +> S f(x)
1= (20)

y =(a,X)+ _ .
y < > represents the overall trend of the connection between the input X and the

L

PIRACY
output y , while the summation term =L represents a set of nonlinear adjustments to this

relationship. The neural network function models the classification of financial transactions as genuine
in fraud detection, as expressed in equation (11).

Where,

d N

£,(X)=3 > a"o(x W)

K=l j=1 (11)

Here fe(x)is denoted as the output function, parameterized bya, d refers to the count of input

features or dimensions in the transaction data, N represents the number of basic functions or neurons
k k

_ a. _ _ _ W.
in the model; ! are the weights that scale the output of each basis function, k2T
k
applied to each basis function, I which modulate the strength of the non-linearity applied to the
inputs.The neural network function is used to classify financial transactions as fraudulent in fraud
detection, as expressed in equation (12).

fg(x):Zaja«x,vVi))

are the weights

X W

12)

Where f"(x )the output function is parameterized bye , which maps the input X transaction data

I a; : . . . . - .
to a classification outcome; ! are the weights associated with each basis function, determining their
contribution to the final decision.Finally IGANN method has classified the financial transaction as
Genuine and Fraudulent.

Result and Discussion

The results of proposed method are discussed in this sector. The proposed EFS-IML-EFD-TS
method is implemented and simulated in Python, compiled using Jupiter Notebook, and executed on a
system with 64 GB RAM, Intel Core i19-13900K CPU, and 500 GB SSD storage. The process begins by
splitting the dataset into training (70%) and testing (15%) sets, followed by performance evaluation
using various classifiers.The obtained result of the proposed EFS-IML-EFD- approach is analyzed with
existing systems like OPFT-MLT, FFD-MLSD, and TP-Al-FFD respectively.
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Performance Measure

This is an important step in choosing the best classifier. Performance metrics that are assessed
include detection rate, F1-score, recall, accuracy, and precision. The performance metric is used to

scale the performance metrics. To scale the performance metric, the True Negative (TN ) True Positive

(TP) (FN)

False Negative and False Positive (FP) samples are needed.

Accuracy

The accuracy of a method evaluates its overall correctness based on the percentage true negative
and of true positive predictions among all forecasts. It gives an indication of how well the method
identifies instances that are positive and negative over the whole dataset.

TP +TN

Accuracy =
TP+TN +FP+FN

(13)
Precision

One measure of machine learning method's efficiency is precision, or how well method creates
positive forecasts. It is measured using the equation (14) that follows.

TP

Precision= ———
(TP + FP)

(14) 3.1.3
Recall

Recall measures a method's capacity to correctly identify all relevant instances, focusing on
minimizing false negatives. It is crucial in situations where capturing all true positives is more important
than avoiding false positives.

TP

Recall=——
TP +FN

(15)
Performance Analysis

Fig 2—-8 displays the simulation outcomes of the proposed EFS-IML-EFD-TS method. Then the
proposed EFS-IML-EFD-TS method is compared with the existing OPFT-MLT, FFD-MLSD-DNN, and
TP-Al-FFD-DNNmethods respectively.
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Accuracy (%)

75
70

65

OPFT-MLT-ANN FFD-MLSD-DNN TP—.III—FII:D— DMNN EF5-IML-EFD-TS
(Proposed)

Fig 2: Performance Analysis of Accuracy

Fig 2 illustrates the performance analysis of accuracy. OPFT-MLT achieves an accuracy of 83%,
FFD-MLSD-DNN scores 80%, and TP-Al-FFD-DNN reaches 89%. The proposed EFS-IML-EFD-TS
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method outperforms the others with an accuracy of 98%. The proposed method demonstrates the
highest accuracy, highlighting its superior effectiveness for the given task.
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Fig 3: Performance Analysis of Precision

Fig 3 illustrates the performance analysis of precision. OPFT-MLT-ANNachieves 85.5% precision,
FFD-MLSD-DNN around 88.5%, TP-Al-FFD-DNN drops to about 80.5%, and the proposed EFS-IML-
EFD-TS significantly outperforms the others with 98.5%. The proposed method demonstrates the

highest precision, highlighting its superior effectiveness in minimizing false positives and enhancing
accuracy.
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Fig 4: Performance Analysis of recall

Fig 4 illustrates the performance analysis of recall. OPFT-MLT-ANN achieves 82% recall, FFD-
MLSD-DNN improves to around 85.5%, TP-AI-FFD-DNN drops to about 79.5%, and the proposed EFS-
IML-EFD-TS significantly outperforms the others with 97%. The proposed method demonstrates the

highest recall, showcasing its superior capability in correctly identifying actual positive cases and
minimizing false negatives.
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Fig 5. Performance Analysis of AUC

Fig 5 illustrates the performance analysis of the AUC curve. Each technique's false positive rate
(FPR) and true positive rate (TPR) are contrasted using the AUC curve. The proposed EFS-IML-EFD-
TS method achieves a TPR of about 0.97 while maintaining a low FPR, consistently outperforming the
others. In comparison, OPFT-MLT-ANNreaches a TPR of 0.89, FFD-MLSD-DNN about 0.91, and TP-
Al-FFD achieves around 0.93. With the highest AUC of 0.9636, the proposed method demonstrates
superior discriminatory power, effectively distinguishing between negative and positive instances
across all thresholds.
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Fig 6: Performance Analysis of Computational Complexity

Fig 6 illustrates the performance analysis of the computational complexity. The computational
complexity graph compares the processing time against input size for each method. The proposed EFS-
IML-EFD-TS model demonstrates the lowest and most consistent growth, starting at around 2 ms for
small inputs and reaching only about 35 ms at an input size of 1000. In contrast, TP-Al-FFD-DNN starts
at 5 ms and grows linearly to about 120 ms. FFD-MLSD-DNN begins near 10 ms and climbs steeply to
420 ms, while OPFT-MLT-ANN shows the highest complexity, rising rapidly from 12 ms to over 600 ms.
These values highlight the superior scalability and computational efficiency of the proposed method,
especially as input size increases.
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Fig 7: Performance Analysis of Loss

Fig 7 illustrates the performance analysis of the loss. A machine learning method's training progress
over 100 epochs is depicted by the loss curve graph, where the Y-axis indicates loss and the X-axis
represents epochs. Both the validation loss and training loss decrease steadily from around 1.0 to near
0.05, indicating effective learning. The close alignment of the two curves throughout training suggests
good generalization and minimal over fitting. The curves begin to flatten around epochs 80 and 100,
signalling convergence and a well-optimized model.
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Fig 8: Performance Analysis of MCC

Fig 8 illustrates the performance analysis of the MCC.The MCC line plot compares the classification
performance of four methods, with the Y-axis representing the Matthews Correlation Coefficient. OPFT-
MLT-ANN achieves an MCC of 0.79, FFD-MLSD-DNN slightly lower at 0.74, and TP-Al-FFD-DNN
improves significantly to 0.84. The proposed EFS-IML-EFD-TS technique outperforms all others with
the highest MCC of 0.91, representing superior classification accuracy. MCC reflects the balance
between true and false predictions; the results highlight the proposed technique’s effectiveness and
reliability in delivering high-quality predictions.

Table 2: Comparison Results of the Performance Analysis

Methods F1-Score Computational Time

OPFT-MLT-ANN 92.5% 1.159
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FFD-MLSD-DNN 89.6% 1.136

TP-AI-FFD-DNN 87.2% 1.147

EFS-IML-EFD-TS

0,
(proposed) 97.5% 1.125

Table 2 displays the comparison results of the performance analysis.In this analysis, the F1-score
performance of the methods is as follows: the proposed EFS-IML-EFD-TS achieved the highest F1-
score at 97.5%, followed by OPFT-MLT at 92.5%, FFD-MLSD at 89.6%, and TP-AI-FFD at 87.2%. In
terms of computational time, the proposed EFS-IML-EFD-TS also demonstrated the shortest
processing time of 1.125 seconds, while FFD-MLSD required 1.136 seconds, TP-AI-FFD took 1.147
seconds, and OPFT-MLT recorded the longest time of 1.159 seconds.

Conclusion

In conclusion, the method EFS-IML-EFD-TS presented in this manuscript provides a solid approach
to solution fraud detection in financial transaction systems. When you combine state-of-the-art pre-
processing with the interpretable model used in this work, it generates the best detection capability by
integrating advances in detection while ensuring the reliability to detect fraud and not providing faulty
fraud detection in financial transactions. The application of this model can invariably strengthen fraud
prevention onboard in the fintech space while generating trust and ensures innovation in the financial
services industry. The EFS-IML-EFD-TS method is implemented in Python. The proposed EFS-IML-
EFD-TS experiment achieves precision at 98.5%, accuracy of 98%, recall of 97%, an F1-score of
97.5%, MCC of 0.91, AUC of 0.9636, with loss of 0.05, and computational time of only 1.125 seconds,
demonstrating to outperformed all methods concerning performance, accuracy and efficiency. The
proposed EFS-IML-EFD-TS frameworks of financial fraud detection have an excellent opportunity to
increase the accuracy of detection and computational efficiency across a variety of financial datasets.
The experiments in this work have also revealed the ongoing challenges of addressing class imbalance
with financial transactions and the challenge of enabling generalization across different transaction
patterns, thus the need for future work to consider hybrid learning solutions and improved feature
engineering strategies to develop the model performance while keeping computational time to a
possible minimum.
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Frequency Percentage
Gend Male 72 48.0
er Female 78 52.0
Under 18
23 15.3
years old
18-30 years
22 14.7
old
31-40 years
19 12.7
old
Age
41-50 years
35 23.3
old
51-60 years
28 18.7
old
60 years old
23 15.3
and over
High school
46 30.7
and under
Undergraduat
e
Educa /Post-second >8 38.7
tion ary
Master's
degree and 46 30.7
over
Total 150 100.0

Appendix 1, Table of Statistical Characteristics of the Sample Population
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Factor load

Item
PA NA

Commonality

CR value

lively
keen
cheerful
keen
thrilled
proud
glad
Energetic
Grateful
Shameful
Awful
Scared
Tight
Frightened
Guilty
Irritable
Shaking with fright
Dread

Note: PA = positive affect, NA = negative affect. All CR values are significant at the p<0.001 level.

Appendix 2, PANAS scale
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Latent variable

Measurement term

Factor loading

Cronbach’s Alpha

AVE

Combined Reliability (CR)

Functional value

sQ1

sQ2

SQ3

SQ4

SQ5

Sentimental value

EMV (1)

EMV (2)

EMV (3)

EMV (4)

Novelty value

NV (1)

NV (2)

NV (3)

NV (4)

NV (5)

Advertising value

XD (1)

XD (2)

XD (3)

Social value

SV (1)

SV (2)

SV (3)

SV (4)

SV (5)

SV (6)

Satisfaction

SAT (1)

SAT (2)

SAT (3)

SAT (4)

Stance

ATT (1)

ATT (2)

Appendix 3, PERVAL scale

Anderson and Fornell;Oliver Scale

Variant

Serial number

Measurement item

Sources of indicators

SA1 It's a wise choice to buy cultural and creative products in this art museum.

SA2

products from this art museum.

SA2I was delighted by the interactive experience of buying cultural and creative

Customer

SA3

cultural and creative products from this art museum.

SA3Overall, I was satisfied with the interactive experience of purchasing

satisfaction

SA4

products with this art museum meets my expectations.

SAAI think the interactive experience of purchasing cultural and creative

SA5

products.

SAS5I feel good about using this art museum to buy cultural and creative

Anderson and
Fornell(1994);
Oliver (1997)

Appendix 4, Anderson and Fornell;Oliver scale
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KMO and Bartlett's test

KMO Sample Suitability .822
Quantity
Bartlett's test of Approxim 1739.723
sphericity ate

chi-square

Degrees 300

of

freedom

Significan .000

ce
Variant Alpha., Cronbach

Alpha ltem count

Pre-interactive .884 5
Mid-interaction 876 4
Post-interaction 777 3
Emotional .839 6
experience
Perceived value 778
Overall satisfaction 819

Appendix 5. Reliability test form, validity test (KMO & Bartlett's test)
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Total Variance Explained

Extract the sum of the Rotating load sum of
Initial eigenvalue squares of the loads squares
Perce
ntage Percent Percent
of age of age of

Compon varian Cumulati Tot varianc Cumulati Tot varianc Cumulati

ents Total ce ve % al e ve % al e ve %

1 6.034 24.136 24136 6.0 24.136 24136 35 14.236 14.236
34 59

2 3.999 15.997 40.133 3.9 15.997 40.133 33 13.396 27.632
29 49

3 2525 10.101 50.234 25 10.101 50.234 3.0 12.084 39.716
25 21

4 1.672 6.689 56.923 1.6 6.689 56.923 24 9.992 49.708
72 98

& 1325 5.299 62.222 1.3 5.299 62.222 21 8.733 58.441
25 83

6 1190 4.761 66.983 1.1 4.761 66.983 21 8.542 66.983
90 35

7 .833 3.333 70.316

8 771 3.083 73.400

9 655 2.620 76.020

10 622  2.489 78.508

11 555 2.219 80.728

12 525 2101 82.828

13 475 1.901 84.729

14 460 1.839 86.568

15 429  1.715 88.283

16 394 1.575 89.859

17 371 1.483 91.341

18 357 1.427 92.768

19 313 1.254 94.022

20 296  1.186 95.208

21 286 1.144 96.352

22 275 1.099 97.450

23 251 1.003 98.453

24 229 916 99.369

25 .158 631 100.000

Extraction method: principal component analysis

Appendix 6. Total Variance Interpretation Table
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CMIN/DF = GFlI RMR RMSEA  NFI IFI TLI CFI
Standard <3.00 >0.90 <0.08 <0.08 =090 =090 =090 =0.90

Measured 1.119 0.928 = 0.052 0.028 0.914 0.990 0.988 0.990
values

Appendix 7, Main Fit Indicators for Study 1 (Structural Equation of Emotional Experience) Model

Standardised
Hopeless path SE. CR. P Conclusion
coefficients
Y Pre—in-teraction—Emotional 458 097 4532 ***  Setup
experience
Emotional
experience-Overall S18 111 2929 .003 Setup
satisfaction

Pre-interactive-Overall
satisfaction

245 102 2.358 .018 Setup

Appendix 8, Coefficients and Significance of Major Paths in Study 1 (Structural Equation of Emotional

Experience)
Hop ' path Effect SE SE P LB UB Conclusi
eles (95%ClI (95%CI  on
s ) )
Pre-interaction- = Total .391 .087 @ .001 .221 .549 Establish
Emotional ed
experience-Ove  Direct 245 107  .028 .029 441 Establish
rall satisfaction ed
Indirect 146 .057 .003 .049 .269 Establish

ed

Appendix 9. Results of mediation analyses for Study 1 (Structural Equations of Emotional Experience)

CMIN/DF GFI RMR ' RMSEA NFI IFI TLI CFI
Standard <3.00 >0.90 <0.08 <0.08 @ =020 =0.90 >0.90 >0.90
Measured 1.132 0.909 0.071 0.030 0.844 0.985 0.982 0.985
values

Appendix 10, Main Fit Indicators for the Study II (Perceived Value Structural Equation) Model
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Hopeles .
path = SE Estimate = S.E. CR. P Conclusion
S
Mid-interaction— Established
. 483 356 076 4.665 ek
Perceived value
Emotional Established
experience—
362 377 .081 4.655 Fkk
Overall

satisfaction

Perceived value— Established
Overall 332 380 | .103 3.697 il

satisfaction

Appendix 11, Study 2 (Perceived Value Structure Equation) Main Path Coefficients and Significance

Parameter ‘Estimate Lower Upper P Conclusion
Mid-int tion—Emotional Established
i : interaction m9 |ona- 168 072 stablishe 000 Established
experience—Overall satisfaction
Mid-interaction—Perceived value Established .
.160 .058 .001 Established

—Qverall satisfaction

Appendix 12, Results of mediation analyses for Study 2 (Perceived Value Structure Equation)

CMIN/DF GFlI RMR RMSEA NFI IFI TU CFl
Standard <3.00 =090 <0.08 <0.08 =0.90 =0.90 =0.90 =0.90
Measured 1172 0.934 0.063 0.069 0.896 0.954 0.934 0.953
values

Appendix 13, Main fit metrics of the model for Study 3 (Interactive Late Validation Model)

Hopeless Path SE S.E. CR. P  Conclusion
Post-interaction— Establis
. 252 .093 2.373 .018
Perceived value hed
Post-interaction—Overall Establi
S 230  .088 2275 023 o0
satisfaction hed
Perceived value—Overall Establis
cevedvateTLv 350 105 3.309  ** !
satisfaction hed

Appendix 14, Study 3 primary path coefficients and significance

552



Architectural Image Studies, ISSN: 2184-8645

Hop path Effect SE SE. P LB UB Conclusi
eles (95%CI (95%Cl  on
s ) )
Post-interaction = Total 318  .105 .005 144 .488 Establish
—Perceived ed
value—Overall Direct 230  .109 .035 .048 414 Establish
satisfaction ed
Indirect .088 .044 .022 .022 .164 Establish
ed

Appendix 15, Results of Study III intermediation analyses
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Rotated component matrix®

Pre-interactiveAi
Pre-interactiveA2
Pre-interactiveA3
Pre-interactiveA4
Pre-interactiveA5s
Mid-interactionBé
Mid-interactionB7
Mid-interactionB8
Mid-interactionB9
Post-interactionC10
Post-interactionC11
Post-interactionC12
Emotional
experienceA113
Emotional
experienceAl114
Emotional
experienceA115
Cultural
resonanceA216
Cultural
resonanceA217
Cultural
resonanceA218
Cognitive valueB119
Cognitive valueB120
Sentimental
valueB221
Sentimental
valueB222

Overall
satisfactionC123
Overall
satisfactionC124
Interactive
engagementC225

.848
.823
.758
.805
.744

.699

.626

T77

.667

.671

.762

Extraction method: principal component analysis

Rotation method: Kaiser normalised maximum variance method
a. Rotation has converged after 7 iterations

Inaredient
4

.803

.806

.799

.800
.730
724
712
.793

6
.831
.767
.844
.821
.694
.825

Appendix 16, Rotated component matrix
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