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Abstract  

A large number of individuals in the world suffer from Chronic Obstructive Lung Disease (COPD). 
There is loss of the lung function in COPD due to emphysema and chronic bronchitis. The early 
detection of emphysematous lesions is very crucial using Computed Tomography (CT) images. This 
is intended to improve clinical management and prognosis. In this paper, an automated framework 
for robust segmentation of emphysema lesions is presented. It also presents morphological features 
using class specific intensity based thresholding, with morphological operations. The proposed 
method is based on the percentile-based threshold estimations adopted for each emphysema class. 
This is to facilitate the different density features and spatial distributions of these classes. The 
performance is evaluated on a multi-institutional dataset from Indian hospitals located in Chennai, 
Hyderabad and an online emphysema database. Quantitative analysis reveals distinct differences 
in the extent and distribution of lesions among the emphysema classes. CLE presents the maximum 
number of lesions, 61.49 per image and minimum burden (14.31%). PSE has the fewest number of 
lesions, 35.10 per image but high severity (19.76%). The 3D surface visualization helps to interpret 
the shape. It presents different intensity patterns and spatial characteristics for each of the 
emphysema classes. Segmentation and display in combination provide a comprehensive picture of 
the distribution and degree of emphysema. It serves as a useful tool for clinicians to enhance the 
diagnosis and determine treatment strategies. 

Keywords: COPD, Emphysema Segmentation, CT, 3D Visualization. 

 

Introduction 

Emphysema is lung disease, one of the forms of COPD. It is a result of damage to the alveoli, or 
loss of lung tissue elasticity [1]. This causes larger air spaces in the lungs to develop, also leading to 
reduced exchange of oxygen and maintaining difficulties when breathing [2]. The risk factors for 
emphysema are long-term cigarette smoking, exposure to environmental and industrial pollutants [3]. 
The disease of emphysema is considered to be irreversible because lung tissue does not regenerate 
itself. The aim of the treatment is to alleviate symptoms and decelerate the disease's course [4]. 

Pulmonary Function Test (PFT) measures patient's Forced Expiratory Volume in 1 second (FEV1) 
during a forced breath.  It is the clinical test to diagnose the severity of COPD. Table 1 shows the 
COPD severity classification. 

Table 1. Severity Classification of COPD  

Stage Classification Description 

I Mild FEV₁ greater than or equal to 80% of predicted 

II Moderate 
FEV₁ less than 80% and greater than or equal 
to 50% of predicted 

III Severe 
FEV₁ less than 50% and greater than or equal 
to 30% of predicted 

IV Very Severe 
FEV₁ less than 30% of predicted or FEV₁  less 
than 50% and chronic respiratory failure 
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According to the decreasing level of FEV₁ in percentages, Global Initiative for Chronic Obstructive 
Lung Disease (GOLD) stages COPD as mild, moderate, severe and very severe [5]. A schematic 
illustration of the PFT used in clinical evaluation is shown in Figure 1.  

 

Fig 1. PFT for Diagnosis of COPD 

Emphysema commonly manifests in three major categories [6-7]: Centrilobular Emphysema 
(CLE), Panlobular Emphysema (PLE), and Paraseptal Emphysema (PSE). The anatomical areas 
impacted, the extent of alveolar damage, and the preponderance of lung zones vary across these 
groups. For example, PLE causes extensive destruction throughout entire lobules [8], PSE is localized 
close to the pleural surfaces [9], and CLE mostly affects the central acini of the upper lobes [10]. Figure 
2 displays representative CT scans of several kinds of emphysema. 

The diagnostic gold standard for emphysema diagnosis is still High-Resolution Computed 
Tomography (HRCT), however there are difficulties in striking a balance between radiation dosage and 
image quality [11]. Although Low-Dose CT (LDCT) scanning reduces radiation dangers, it adds noise 
that makes automated lesion diagnosis more difficult. This study uses deep learning-based 
segmentation algorithms for precise emphysema localization in CT images in order to overcome these 
problems. The segmented lesions are then reconstructed using a 3D visualization technique [12]. 
Emphysema distribution and extent can therefore be easily assessed for a clinical context. 

 

                           (a)                                               (b)                                      (c) 

Fig 2. Emphysema classes observed in CT scans: (a) CLE, (b) PLE, (c) PSE 

The contributions of this paper are as follows: 

1. The paper presents an automatic computer-aided method for the distinction and classification 
of classes of emphysematous lesions in human lungs on CT images 

2. The study shows combination of emphysema class-specific intensity thresholding with 
morphological operations to detect the lesions accurately in LDCT and HRCT scans. 
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3. The proposed method provides 3D visualization of emphysema lesions in the lungs, helping 
the clinicians understand location and spreading of the lesions and evaluate the disease 
severity. 

The rest of this paper is organized as follows: Section 2 covers the literature survey; Section 3 
describes the materials used and proposed methodology; Section 4 presents the experimental results, 
performance metrics, and comparative evaluations and Section 5 provides the conclusion and future 
work. 

Literature Survey 

Deep learning methods recently have improved automated emphysema analysis in CT images. 
Research in this area can be divided into two main directions: one focuses on lesion segmentation and 
the other combines segmentation with quantitative analysis and visualization. However, most existing 
methods have problems, that is, either they do not calculate important lesion metrics or they require too 
much computing power. This indicates that segmentation methods which can perform well or clearly 
visualize the 3D image in this aspect are needed. 

Emphysema Lesion Segmentation 

In the diagnosis and quantification of emphysema, accurate segmentation of emphysematous 
lesions is important. Sarsembayeva et al. [13] performed the segmentation of COPD lesions using 
UNet architecture. They obtained good performance in detecting lesion boundaries. But their work was 
built on a small amount of annotated data. Li et al. [14] focused on segmentation of the lung lobes as a 
precursor to emphysema quantification. But their technique did not create lesion-level masks. 
Ramalingam et al. [15] developed an adaptive ResNet combined with Bi-LSTM to detect emphysema. 
Their model learned features in a sequence, but needed more computing power. Rao et al. [16] 
introduced Seg-ResUNet. Their model performed well in detecting lesion boundaries. Their approach 
also employs some of the optimization.  However, this approach took a long time to process the 
images. It is difficult to use in real clinical practice.  

Integrated Frameworks and Research Gaps 

Wu et al. de [17] provided a full AI pipeline. The presence, stage, and lesion burden of emphysema 
could be quantified. This demonstrates that end-to-end automatic analysis is feasible. But the pipeline 
is computationally very expensive. It is difficult to apply in hospitals with limited resources. Vestal et al. 
[18] used spatial point process modeling to analyze the CT scans. But their method did not have 
automated segmentation or calculation of quantitative parameters. 

Current methods for analyzing emphysema have critical problems that limit their usage in clinical 
practice. Most existing approaches use only one type of analysis, which cannot combine quantitative 
lesion measurements with deep learning-based feature recognition very well. Many studies test their 
methods on a small number of subjects. Thus, the results may not work properly for different types of 
patients or different CT scanners. Most importantly, the existing research does not focus enough on 
interactive 3D visualization tools. The clinicians can explore and understand where emphysema is 
located and how severe it is in the lungs with 3D visualization. These problems indicate that we need 
new methods that can do all of the following processes together: accurate automated segmentation, 
calculation of lesion measurements and better 3D visualization. This combination would help clinicians 
interpret the results better and make better diagnoses. 

Materials and Methodology 

Data Collection 

The primary dataset CT images used in this study were collected from SRM Medical College 
Hospital & Research Centre in Kattankulathur, Chennai, Tamil Nadu, India [15]. The dataset has 1,000 
CT chest images from 40 subjects. The group includes 21 healthy people (14 males, 7 females; average 
age 35.85 years) and 19 patients with emphysema (17 males, 2 females; average age 66.5 years). The 
emphysema patients showed different types of emphysema patterns: CLE, PLE, or PSE. The remaining 
scans revealed normal lung tissue, with about 475 images showing emphysematous lesions. For 
analysis, 25 sample slices were chosen for each patient. 

A secondary dataset comprising 593 CT slices from 193 individuals was obtained from Malla 
Reddy Narayana Hospital in Hyderabad, Telangana, India. In order to provide a variety of clinical 
samples for algorithm validation across realistic imaging situations, our cohort included both healthy 
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persons and patients with one or more emphysema classifications. Examples of emphysema classes 
from CT scans obtained from Malla Reddy Narayana Hospital in Hyderabad, India, are shown in Figure 
3(a).  

The third dataset was taken from the Computed Tomography Emphysema Database and included 
115 high-resolution CT slices from 39 individuals [19]. Nine nonsmokers, ten smokers without COPD, 
and twenty smokers with a diagnosis of COPD made up the group. GE LightSpeed QX/i equipment with 
an in-plane resolution of 0.78 × 0.78 mm, slice thickness of 1.25 mm, tube voltage of 140 kV, and tube 
current of 200 mAs was used to capture the images. A high-resolution bone algorithm was used for 
reconstruction. Slices from the upper, middle, and lower lung areas were included in the 512 × 512 pixel 
images. Different emphysema classes from the Computed Tomography Emphysema Database are 
shown in Figure 3(b).  

 

    (a)                                                                     (b) 

Fig 3. (a) Malla Reddy Narayana Hospital Database, (b) CT Emphysema Database  

Proposed Methodology 

 

Fig 4. Emphysema Segmentation and 3D Visualization Pipeline 
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The proposed framework has five main steps (Figure 4) for accurate emphysema lesion detection 
and interactive spatial analysis. First, CT scan images are loaded and normalized for intensity to keep 
uniformity across the dataset. Table 2 lists all preprocessing steps used. Pixel values are scaled to [-1, 
1] range so lesion detection works well on different CT scanners. Subsequent lung boundaries are 
identified by automated segmentation. Then, emphysema lesions are identified using class-specific 
intensity thresholds. CLE, PLE, PSE require different thresholds, due to their density dissimilarities. 
This thresholding results in binary masks of emphysema regions vs normal lung tissue. Then, 
morphological techniques including dilation, erosion and closing are performed to enhance the 
segmentation quality as well as to eliminate noise or artefact. 

The clinical metrics are then calculated from the segmented emphysema regions such as number 
of lesions, total emphysema volume and Low Attenuation Area (LAA) percentage, severity distribution. 
The segmentations are used to average normalized intensity values contained within segmented 
lesions as indirect measures of local tissue density. The segmented emphysema luecent areas are next 
transformed to 3D surface models by applying intensity based elevation mapping. In this step, the 
intensity range is coupled with each level of emphysema severity. This aids in visual assessment of the 
shape of lesions and their location relative to the lung anatomy. The 3D representation is fully 
interactive. The user can rotate the lung to inspect from various directions and study in detail about the 
emphysema characteristics. The system also generates quantitative lesion reports. It contains 
segmentation metrics, morphology details and severity values as well as 3D renderings. This allows 
the clinicians to make a more comprehensive analysis of emphysema when compared with standard 
2D CT slices. 

Pre-Processing and Lung Segmentation 

Table 2. Preprocessing Methods 

Step Technique Purpose 

Load Image Computed Tomography (CT) Raw slice input 

Intensity 
Normalization 

Z-score normalization 
Remove bias and 
standardize 

Contrast 
Enhancement 

CLAHE (Contrast Limited Adaptive 
Histogram Equalization) 

Enhance lung 
details 

Noise 
Reduction 

Gaussian Blur (3x3, σ=0.5) 
Preserve edges, 
reduce noise 

Lung 
Segmentation 

Thresholding + morphological 
operations 

Extract lung regions 

Boundary 
Refinement 

Morphological closing 
Smooth edges and 
remove artifacts 

Preprocessing of Raw 2D CT Scans The raw 2D CT scans undergo preprocessing pipeline to 
enhance the image quality and extract lung regions for accurate analysis of emphysema. The process 
starts by loading each CT slice 𝐼(𝑥, 𝑦) as a grayscale image. Subsequent step is to perform intensity 
normalization with Z-score standardization, which can be described as in Eq. (1). This is to reduce 
intensity bias across the dataset [20]. 

                                                              𝐼𝑧(𝑥, 𝑦) =
𝐼(𝑥,𝑦)−𝜇

𝜎
                                                                   (1) 

where μ is the lung region's mean and σ is the standard deviation of intensity values. 

Min-max scaling was applied to standardize the image intensities [21]. This method rescales the 
intensity values to fall in between 0 and 255. Equation (2) shows the Min-Max Scaling. 

                                              𝐼𝑠(𝑥, 𝑦) = 255 × 
𝐼𝑧(𝑥,𝑦)−min (𝐼𝑧)

max(𝐼𝑧)−min (𝐼𝑧)
                                                          (2) 
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Contrast enhancement using CLAHE helps in improving the visibility of small lung structures and 
emphysema features [22-23], as shown in Eq. (3). 

                                                 𝐼𝑐𝑙𝑎ℎ𝑒(𝑥, 𝑦) = 𝐶𝐿𝐴𝐻𝐸(𝐼𝑠(𝑥, 𝑦))                                                              (3) 

Gaussian blur filtering reduces noise in the images while saving the important anatomical edges 
[24-25], as shown in Eq. (4). 

                                                            𝐼𝑝(𝑥, 𝑦) = 𝐺𝜎 ∗ 𝐼𝑐𝑙𝑎ℎ𝑒(𝑥, 𝑦)                                                                  (4) 

where 𝐺𝜎 ∗ stands for convolution with Gaussian kernel of standard deviation σ = 0.5. 

Automated lung segmentation uses thresholding combined with morphological operations. It 
isolates and identifies the lung tissue boundaries, as shown in Eq. (5).  

                                                          𝑀(𝑥, 𝑦) = {
1, 𝐼𝑝(𝑥, 𝑦) < 𝑇

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
                                                              (5) 

where T is the intensity threshold value used to identify lung tissue.  

Morphological closing further improves the segmentation by smoothing the edges and removing 
the segmentation artifacts [26], as shown in Eq. (6). 

                                                   𝑀𝑐𝑙𝑜𝑠𝑒𝑑(𝑥, 𝑦) = (𝑀(𝑥, 𝑦) ⊕ 𝑆) ⊖ 𝑆                                               (6) 

where ⊕ is the dilation, ⊖ denote the erosion and S is the structuring element. This method 
bridges small gaps and sharp corners in segmentation. It leads to a pair of lung boundaries which are 
smooth and continuous [27]. 

This preprocessing streamline ensures that lung tissue is extracted robustly. It offers a strong 
basement of further research in emphysema lesion detection and quantification. 

 

Qualitative studies of our segmentations, as illustrated in Figure 5, clearly prove that the extracted 
lung borders are correct. Results show that the automatic masking succeeds. This constitutes a sound 
basis for the localization and analysis of the emphysema. 

 

                          (a)                                           (b)                                           (c) 

Fig 5. (a) Original CT, (b) Lung Mask, (c) Lung Segmentation Result 

Lesion Segmentation 

Segmentation of the lesion is a key step in the automated emphysema analysis. It enables us to 
distinguish and further pinpoint the emphysema regions in CT images [28-29]. The described approach 
in Fig. 6 utilizes intensity thresholding and morphological operations to search for the lesions in the 
segmented lung region. This technique utilizes As the emphysema types have differing density 
properties, multiple threshold values for intensity are applied based on the different emphysema 
classes. Binary lesion masks are subsequently generated for delineating the diseased tissue from 
normal lung regions. Subsequently, the morphological closing operations are performed to further 
refine the delineation and eliminate segmentation artifacts. We can then measure the emphysema 
burden, with the lesion masks in hand. It encompasses counts of lesions, distributions (i.e. severity 
distribution) and also spatial arrangement. This then could serve as groundwork for comprehensive 
clinical characterization. This provides a good trade-off between the computational burden and the 
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accuracy of the segmentation. This approach allows for analysis of a large number of CT images and 
retains the clinical relevance. The binary mask of emphysema lesion obtained is seen in Eq. (7).  

                                                      𝐿𝑚𝑎𝑠𝑘(𝑥, 𝑦) = {
1, 𝐼𝑠(𝑥, 𝑦) < 𝑇𝑐𝑙𝑎𝑠𝑠  𝑎𝑛𝑑 𝑀𝑐𝑙𝑜𝑠𝑒𝑑(𝑥, 𝑦)

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                            
                  (7)             

where 𝑇𝑐𝑙𝑎𝑠𝑠 is the threshold value used to detect emphysema. 

Eq. (8). calculates the percentage of lung area affected by emphysema [30].  

                                           𝐿𝐴𝐴(%) =
∑(𝑥,𝑦)∈𝐿𝑢𝑛𝑔 𝐿𝑚𝑎𝑠𝑘(𝑥,𝑦)  

∑(𝑥,𝑦)∈𝐿𝑢𝑛𝑔𝑀𝑐𝑙𝑜𝑠𝑒𝑑(𝑥,𝑦)
 ×  100                                (8) 

 

 

Fig 6. Automated Emphysema Lesion Segmentation Pipeline 

Three-Dimensional Visualization of Emphysema Lesions 

Plotly and Matplotlib libraries allow viewers to generate 3D surface images of the emphysema 
lesions detected in the segmentation phase. The heights of the 3D surface are determined according 
to the pixels intensity. This technique gives more depth than seeing CT slices alone. By using 
interactive tools, clinicians are able to manipulate the 3D model so as to rotate it and look at the lesions 
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from various angles which reveal their shape, the severity declared through colour coding as well as 
how they spread in different segments of the lungs. 

The main advantage of this method is that it illustrates the correlation between emphysema 
lesions and surrounding lung anatomy. It aids in the comprehension of general distribution pattern of 
emphysema disease in the lungs by radiologists. The screen provides clear images for clinical findings. 
The lesions can be examined in detail by clinicians with facilities such as interactive rotation and zoom.  

Results 

The emphysema lesion segmentation and visualization were implemented in Google Colab using 
a Tesla T4 GPU, and Python 3.10 with TensorFlow 2.15. This setup allowed us to process many CT 
images efficiently. The emphysema regions detected from CT scans were sorted into four groups 
namely CLE, PLE, PSE and normal lung tissue. All steps of the work were carried out in a full pipeline 
from preprocessing the images, segmenting the lungs, finding lesions and creating 3D views. All these 
steps were done on this cloud platform. This made it easy to test the method on different datasets and 
get the results. 

Lesion Segmentation Results 

The lesion segmentation module was built using Python with OpenCV for processing the images, 
NumPy for doing calculations and scikit-image for morphological operations. Different threshold values 
are used for each class of emphysema because they show different density levels in the images. Binary 
masks were made to mark where the emphysema is in the lung tissue. Then the edges of the lesions 
were found using contour detection methods. 

 

 

                                  (a)                                                                  (b) 

 

(c) 

Fig 7. Quantified Lesion Boundaries for Emphysema Classes: (a) CLE, (b) PLE, (c) PSE 
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Each lesion was classified by how severe it was. It is shown with different-coloured boundaries: 
red for severe lesions, orange for moderate ones, and yellow for mild ones. Using different colours 
makes it easier for clinicians to understand where the lesions are and how serious they are. Figure 7 
shows the severity-coloured lesion boundaries for CLE, PLE and PSE. Figure 8 shows corresponding 
binary lesion masks, which confirm that the emphysema areas are located correctly across all 
emphysema classes. 

 

(a) 

 

 

(b) 

 

 

(c) 

 

Fig 8. Quantified Lesion Segmentation for Emphysema Classes: (a) CLE, (b) PLE, (c) PSE 
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Performance Analysis on Lesions 

Emphysema lesions were measured and analyzed for all three emphysema classes using detailed 
severity classification. Table 3 shows how many lesions were found at each severity level (mild, 
moderate, severe) and the total emphysema burden for each class. 

Table 3. Emphysema Lesion Delineation 

Class Mild (%) Moderate (%) Severe (%) Combined (%) 

CLE 76.85 15.80 7.35 14.31 

PLE 71.71 18.64 9.66 15.64 

PSE 66.65 18.40 14.95 19.76 

The three emphysema classes showed different patterns of the damage. For CLE, most of the 
lesions were mild, and only a small portion were severe. The disease seems more limited and mainly 
around the small airways. In PLE, there were again many mild lesions, but the share of moderate lesions 
was higher. This suggests that the damage is spread more widely in the lung tissue. In the case of PSE, 
we observed highest proportion of severe lesions among the three classes. This is consistent with the 
typical paraseptal pattern in which the lung periphery is predominantly involved. Through these 
observations, we can see that our segmentation technique is capable of distinguishing among the three 
emphysema classes and provide a quantitative measure for how severe the disease is in different parts 
of the lung. 

Lesion Burden Analysis and Disease Progression Patterns 

Image based lesion quantification in this work reveals that disease burden pattern is unique for 
each emphysema class, while lesion shape and size also vary with severity. The average number of 
lesions per image and the average size of lesions are recorded for all three emphysema types, mild, 
moderate, and severe for each class in Table 4. 

Table 4. Lesion Burden and Morphology Across Emphysema Classes 

Class 
Avg 
Lesions/Image 

Severe Lesion 
Size (px) 

Moderate 
Lesion Size (px) 

Mild Lesion 
Size (px) 

CLE 61.49 385 185 42 

PLE 39.43 520 215 48 

PSE 35.1 445 190 45 

CLE showed the greatest number of lesions on an image basis (61.49 lesions/image). This 
illustrates the undue destruction common for this nature. PLE had moderate lesion count (39.43 
lesions/image). Though some (less) severe lesions were very large (520 pixels), implying that they 
have for the same number reduced but bigger damaged area of the tissue. PSE showed the lowest 
lesion number (35.10 lesions/image), with a large percentage of severe ones too (445 pixels). This 
corresponds to the focal damage distribution in paraseptal emphysema. Severe lesions were 8-11 
times larger than mild ones for all classes. These numbers demonstrate a distinct pattern for each 
emphysema class and confirm that our segmentation method is effective in counting lesions and 
measuring their shape and size.  
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Fig 9. Correlation Between Lesion Percentage and Lesion Count  

From the scatter plot in Figure 9, lesion burden percentage and lesion count are inversely related 
among the emphysema classes. CLE has the moderate emphysema rate (14.31%) however, the 
highest lesion amounts (61.49 lesions per image). It contains numerous randomly distrbuted little 
lesions. PSE is the most loaded (19.76%) and places the smallest number of lesions (35.10 lesions), 
which are therefore larger, clustered ones as expected from paraseptal damage. PLE is a compromise 
of these two. This inverse relationship demonstrates that a complete evaluation of the disease require 
both number and burden measurement, this also indicates characteristic patterns for each emphysema 
class. 

Three-Dimensional Spatial Visualization of Emphysema Lesions 

 

                         (a)                                                  (b)                                              (c) 

Fig 10. 3D Surface Comparison of Emphysema : (a) CLE, (b) PLE, (c) PSE  

3D visualization helps us to better understand how emphysema lesions are arranged and shaped 
in different disease classes. Figure 10 shows the volumetric intensity profiles for example CT slices of 
CLE, PLE and PSE as elevation maps where the surface height matches the pixel intensity. This 
approach shows distinct lesion patterns. CLE has a more diffuse and fine texture. PLE has focal high-
intensity areas more apparent. PSE presents focal hyperattenuated images, characteristic of 
paraseptal lesions.  
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Fig 11. Spatial Distribution in CLE - Stacked Slice Analysis  

Figure 11 demonstrates a stacked 3D reconstruction of sequential CLE slices in top, mid and 
bottom lung regions in another patient case. This enables image analysis of emphysema morphology 
as a function of anatomy depth. "Layers" demonstrates variation levels and that the disease progresses 
spatially in the cranio-caudal direction. This provides full anatomical context, thereby facilitating a better 
comprehension of the disease distribution patterns and demonstrates that our method has the ability 
to do phenotyping.  

Conclusion and Future work 

In this study, we propose an automated approach for the segmentation and characterization of 
emphysema lesions based on class-specific intensity thresholding in combination with 3D visualization. 
The method works well for finding emphysema classes with distinct morphology differences. From the 
quantitative results, CLE with the highest number of lesions per image (61.49) presents the lowest 
severity burden (14.31%), while PSE with the least number of lesion count (35.10), has highest burden 
(19.76%). Using Plotly and Matplotlib with intensity-based segmentation gives better spatial 
understanding than normal 2D slice viewing. This helps clinicians in better emphysema diagnosis and 
management. 

Future work involves extending the framework for full 3D CT datasets in order to analyze complete 
lung volumes. Machine learning techniques will be used to automatically set threshold values better for 
different scanners. Automatic classification of emphysema phenotypes is also planned to improve 
diagnosis accuracy. For clinical use, multi-hospital validation and integration with hospital systems for 
real-time work are needed. Augmented reality visualization and disease progression models will help 
clinicians manage emphysema patients better. 
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