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Abstract

A large number of individuals in the world suffer from Chronic Obstructive Lung Disease (COPD).
There is loss of the lung function in COPD due to emphysema and chronic bronchitis. The early
detection of emphysematous lesions is very crucial using Computed Tomography (CT) images. This
is intended to improve clinical management and prognosis. In this paper, an automated framework
for robust segmentation of emphysema lesions is presented. It also presents morphological features
using class specific intensity based thresholding, with morphological operations. The proposed
method is based on the percentile-based threshold estimations adopted for each emphysema class.
This is to facilitate the different density features and spatial distributions of these classes. The
performance is evaluated on a multi-institutional dataset from Indian hospitals located in Chennai,
Hyderabad and an online emphysema database. Quantitative analysis reveals distinct differences
in the extent and distribution of lesions among the emphysema classes. CLE presents the maximum
number of lesions, 61.49 per image and minimum burden (14.31%). PSE has the fewest number of
lesions, 35.10 per image but high severity (19.76%). The 3D surface visualization helps to interpret
the shape. It presents different intensity patterns and spatial characteristics for each of the
emphysema classes. Segmentation and display in combination provide a comprehensive picture of
the distribution and degree of emphysema. It serves as a useful tool for clinicians to enhance the
diagnosis and determine treatment strategies.

Keywords: COPD, Emphysema Segmentation, CT, 3D Visualization.

Introduction

Emphysema is lung disease, one of the forms of COPD. Itis a result of damage to the alveoli, or
loss of lung tissue elasticity [1]. This causes larger air spaces in the lungs to develop, also leading to
reduced exchange of oxygen and maintaining difficulties when breathing [2]. The risk factors for
emphysema are long-term cigarette smoking, exposure to environmental and industrial pollutants [3].
The disease of emphysema is considered to be irreversible because lung tissue does not regenerate
itself. The aim of the treatment is to alleviate symptoms and decelerate the disease's course [4].

Pulmonary Function Test (PFT) measures patient's Forced Expiratory Volume in 1 second (FEV1)
during a forced breath. It is the clinical test to diagnose the severity of COPD. Table 1 shows the
COPD severity classification.

Table 1. Severity Classification of COPD

Stage Classification | Description

I Mild FEV, greater than or equal to 80% of predicted
FEV, less than 80% and greater than or equal

Il Moderate

to 50% of predicted

FEV, less than 50% and greater than or equal
to 30% of predicted

FEV; less than 30% of predicted or FEV; less
than 50% and chronic respiratory failure

1 Severe

v Very Severe
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According to the decreasing level of FEV, in percentages, Global Initiative for Chronic Obstructive
Lung Disease (GOLD) stages COPD as mild, moderate, severe and very severe [5]. A schematic
illustration of the PFT used in clinical evaluation is shown in Figure 1.
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Fig 1. PFT for Diagnosis of COPD

Emphysema commonly manifests in three major categories [6-7]: Centrilobular Emphysema
(CLE), Panlobular Emphysema (PLE), and Paraseptal Emphysema (PSE). The anatomical areas
impacted, the extent of alveolar damage, and the preponderance of lung zones vary across these
groups. For example, PLE causes extensive destruction throughout entire lobules [8], PSE is localized
close to the pleural surfaces [9], and CLE mostly affects the central acini of the upper lobes [10]. Figure
2 displays representative CT scans of several kinds of emphysema.

The diagnostic gold standard for emphysema diagnosis is still High-Resolution Computed
Tomography (HRCT), however there are difficulties in striking a balance between radiation dosage and
image quality [11]. Although Low-Dose CT (LDCT) scanning reduces radiation dangers, it adds noise
that makes automated lesion diagnosis more difficult. This study uses deep learning-based
segmentation algorithms for precise emphysema localization in CT images in order to overcome these
problems. The segmented lesions are then reconstructed using a 3D visualization technique [12].
Emphysema distribution and extent can therefore be easily assessed for a clinical context.

4

(b) (©)
Fig 2. Emphysema classes observed in CT scans: (a) CLE, (b) PLE, (c) PSE
The contributions of this paper are as follows:

1. The paper presents an automatic computer-aided method for the distinction and classification
of classes of emphysematous lesions in human lungs on CT images

2. The study shows combination of emphysema class-specific intensity thresholding with
morphological operations to detect the lesions accurately in LDCT and HRCT scans.
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3. The proposed method provides 3D visualization of emphysema lesions in the lungs, helping
the clinicians understand location and spreading of the lesions and evaluate the disease
severity.

The rest of this paper is organized as follows: Section 2 covers the literature survey; Section 3
describes the materials used and proposed methodology; Section 4 presents the experimental results,
performance metrics, and comparative evaluations and Section 5 provides the conclusion and future
work.

Literature Survey

Deep learning methods recently have improved automated emphysema analysis in CT images.
Research in this area can be divided into two main directions: one focuses on lesion segmentation and
the other combines segmentation with quantitative analysis and visualization. However, most existing
methods have problems, that is, either they do not calculate important lesion metrics or they require too
much computing power. This indicates that segmentation methods which can perform well or clearly
visualize the 3D image in this aspect are needed.

Emphysema Lesion Segmentation

In the diagnosis and quantification of emphysema, accurate segmentation of emphysematous
lesions is important. Sarsembayeva et al. [13] performed the segmentation of COPD lesions using
UNet architecture. They obtained good performance in detecting lesion boundaries. But their work was
built on a small amount of annotated data. Li et al. [14] focused on segmentation of the lung lobes as a
precursor to emphysema quantification. But their technique did not create lesion-level masks.
Ramalingam et al. [15] developed an adaptive ResNet combined with Bi-LSTM to detect emphysema.
Their model learned features in a sequence, but needed more computing power. Rao et al. [16]
introduced Seg-ResUNet. Their model performed well in detecting lesion boundaries. Their approach
also employs some of the optimization. However, this approach took a long time to process the
images. It is difficult to use in real clinical practice.

Integrated Frameworks and Research Gaps

Wou et al. de [17] provided a full Al pipeline. The presence, stage, and lesion burden of emphysema
could be quantified. This demonstrates that end-to-end automatic analysis is feasible. But the pipeline
is computationally very expensive. It is difficult to apply in hospitals with limited resources. Vestal et al.
[18] used spatial point process modeling to analyze the CT scans. But their method did not have
automated segmentation or calculation of quantitative parameters.

Current methods for analyzing emphysema have critical problems that limit their usage in clinical
practice. Most existing approaches use only one type of analysis, which cannot combine quantitative
lesion measurements with deep learning-based feature recognition very well. Many studies test their
methods on a small number of subjects. Thus, the results may not work properly for different types of
patients or different CT scanners. Most importantly, the existing research does not focus enough on
interactive 3D visualization tools. The clinicians can explore and understand where emphysema is
located and how severe it is in the lungs with 3D visualization. These problems indicate that we need
new methods that can do all of the following processes together: accurate automated segmentation,
calculation of lesion measurements and better 3D visualization. This combination would help clinicians
interpret the results better and make better diagnoses.

Materials and Methodology
Data Collection

The primary dataset CT images used in this study were collected from SRM Medical College
Hospital & Research Centre in Kattankulathur, Chennai, Tamil Nadu, India [15]. The dataset has 1,000
CT chestimages from 40 subjects. The group includes 21 healthy people (14 males, 7 females; average
age 35.85 years) and 19 patients with emphysema (17 males, 2 females; average age 66.5 years). The
emphysema patients showed different types of emphysema patterns: CLE, PLE, or PSE. The remaining
scans revealed normal lung tissue, with about 475 images showing emphysematous lesions. For
analysis, 25 sample slices were chosen for each patient.

A secondary dataset comprising 593 CT slices from 193 individuals was obtained from Malla
Reddy Narayana Hospital in Hyderabad, Telangana, India. In order to provide a variety of clinical
samples for algorithm validation across realistic imaging situations, our cohort included both healthy
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persons and patients with one or more emphysema classifications. Examples of emphysema classes
from CT scans obtained from Malla Reddy Narayana Hospital in Hyderabad, India, are shown in Figure

3(a).

The third dataset was taken from the Computed Tomography Emphysema Database and included
115 high-resolution CT slices from 39 individuals [19]. Nine nonsmokers, ten smokers without COPD,
and twenty smokers with a diagnosis of COPD made up the group. GE LightSpeed QX/i equipment with
an in-plane resolution of 0.78 x 0.78 mm, slice thickness of 1.25 mm, tube voltage of 140 kV, and tube
current of 200 mAs was used to capture the images. A high-resolution bone algorithm was used for
reconstruction. Slices from the upper, middle, and lower lung areas were included in the 512 x 512 pixel
images. Different emphysema classes from the Computed Tomography Emphysema Database are

shown in Figure 3(b).

-~

(@)
Fig 3. (a) Malla Reddy Narayana Hospital Database, (b) CT Emphysema Database
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Fig 4. Emphysema Segmentation and 3D Visualization Pipeline
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The proposed framework has five main steps (Figure 4) for accurate emphysema lesion detection
and interactive spatial analysis. First, CT scan images are loaded and normalized for intensity to keep
uniformity across the dataset. Table 2 lists all preprocessing steps used. Pixel values are scaled to [-1,
1] range so lesion detection works well on different CT scanners. Subsequent lung boundaries are
identified by automated segmentation. Then, emphysema lesions are identified using class-specific
intensity thresholds. CLE, PLE, PSE require different thresholds, due to their density dissimilarities.
This thresholding results in binary masks of emphysema regions vs normal lung tissue. Then,
morphological techniques including dilation, erosion and closing are performed to enhance the
segmentation quality as well as to eliminate noise or artefact.

The clinical metrics are then calculated from the segmented emphysema regions such as number
of lesions, total emphysema volume and Low Attenuation Area (LAA) percentage, severity distribution.
The segmentations are used to average normalized intensity values contained within segmented
lesions as indirect measures of local tissue density. The segmented emphysema luecent areas are next
transformed to 3D surface models by applying intensity based elevation mapping. In this step, the
intensity range is coupled with each level of emphysema severity. This aids in visual assessment of the
shape of lesions and their location relative to the lung anatomy. The 3D representation is fully
interactive. The user can rotate the lung to inspect from various directions and study in detail about the
emphysema characteristics. The system also generates quantitative lesion reports. It contains
segmentation metrics, morphology details and severity values as well as 3D renderings. This allows
the clinicians to make a more comprehensive analysis of emphysema when compared with standard
2D CT slices.

Pre-Processing and Lung Segmentation
Table 2. Preprocessing Methods

Normalization

Z-score normalization

Step Technique Purpose
Load Image Computed Tomography (CT) Raw slice input
Intensity Remove bias and

standardize

Segmentation

operations

Contrast CLAHE (Contrast Limited Adaptive | Enhance lung
Enhancement | Histogram Equalization) details

Noise . Gaussian Blur (3x3, 0=0.5) Preserve . edges,
Reduction reduce noise

Lung Thresholding + morphological

Extract lung regions

Boundary
Refinement

Morphological closing

Smooth edges and
remove artifacts

Preprocessing of Raw 2D CT Scans The raw 2D CT scans undergo preprocessing pipeline to
enhance the image quality and extract lung regions for accurate analysis of emphysema. The process
starts by loading each CT slice I(x,y) as a grayscale image. Subsequent step is to perform intensity
normalization with Z-score standardization, which can be described as in Eqg. (1). This is to reduce
intensity bias across the dataset [20].

I(xy)—up
L(x,y) =—— (1)
where p is the lung region's mean and o is the standard deviation of intensity values.

Min-max scaling was applied to standardize the image intensities [21]. This method rescales the
intensity values to fall in between 0 and 255. Equation (2) shows the Min-Max Scaling.

I(x,y) = 255 x -2x2minds) 2)

max(Iz)—min(l;)
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Contrast enhancement using CLAHE helps in improving the visibility of small lung structures and
emphysema features [22-23], as shown in Eq. (3).

Iclahe(x: y) = CLAHE(IS(X' y) (3

Gaussian blur filtering reduces noise in the images while saving the important anatomical edges
[24-25], as shown in Eq. (4).

Ip(x' y) = GG’ * Iclahe(x: y) (4)
where G, * stands for convolution with Gaussian kernel of standard deviation o = 0.5.

Automated lung segmentation uses thresholding combined with morphological operations. It
isolates and identifies the lung tissue boundaries, as shown in Eq. (5).

M(x,y) = {1, L(,y)<T

0, otherwise
where T is the intensity threshold value used to identify lung tissue.

(®)

Morphological closing further improves the segmentation by smoothing the edges and removing
the segmentation artifacts [26], as shown in Eq. (6).

Miosea(,y) = M(x,y) DSOS (6)

where @ is the dilation, © denote the erosion and S is the structuring element. This method
bridges small gaps and sharp corners in segmentation. It leads to a pair of lung boundaries which are
smooth and continuous [27].

This preprocessing streamline ensures that lung tissue is extracted robustly. It offers a strong
basement of further research in emphysema lesion detection and quantification.

Qualitative studies of our segmentations, as illustrated in Figure 5, clearly prove that the extracted
lung borders are correct. Results show that the automatic masking succeeds. This constitutes a sound
basis for the localization and analysis of the emphysema.

(@) (b) (c)
Fig 5. (a) Original CT, (b) Lung Mask, (c) Lung Segmentation Result

Lesion Segmentation

Segmentation of the lesion is a key step in the automated emphysema analysis. It enables us to
distinguish and further pinpoint the emphysema regions in CT images [28-29]. The described approach
in Fig. 6 utilizes intensity thresholding and morphological operations to search for the lesions in the
segmented lung region. This technique utilizes As the emphysema types have differing density
properties, multiple threshold values for intensity are applied based on the different emphysema
classes. Binary lesion masks are subsequently generated for delineating the diseased tissue from
normal lung regions. Subsequently, the morphological closing operations are performed to further
refine the delineation and eliminate segmentation artifacts. We can then measure the emphysema
burden, with the lesion masks in hand. It encompasses counts of lesions, distributions (i.e. severity
distribution) and also spatial arrangement. This then could serve as groundwork for comprehensive
clinical characterization. This provides a good trade-off between the computational burden and the
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accuracy of the segmentation. This approach allows for analysis of a large number of CT images and
retains the clinical relevance. The binary mask of emphysema lesion obtained is seen in Eq. (7).

1' Is(x' Y) < Tclass and Mclosed (x' y) (7)

Lmasi(x,y) = {o, otherwise

where T, IS the threshold value used to detect emphysema.

Eq. (8). calculates the percentage of lung area affected by emphysema [30].

LAA(%) = Y(x.y)ELung Lingsk(x.,y) % 100 ®)

X(x,y)ELungM cioseqa(x,y)
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v
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v
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v
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Severity-Coded Lesion
Boundaries OQutput

Fig 6. Automated Emphysema Lesion Segmentation Pipeline
Three-Dimensional Visualization of Emphysema Lesions

Plotly and Matplotlib libraries allow viewers to generate 3D surface images of the emphysema
lesions detected in the segmentation phase. The heights of the 3D surface are determined according
to the pixels intensity. This technique gives more depth than seeing CT slices alone. By using
interactive tools, clinicians are able to manipulate the 3D model so as to rotate it and look at the lesions
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from various angles which reveal their shape, the severity declared through colour coding as well as
how they spread in different segments of the lungs.

The main advantage of this method is that it illustrates the correlation between emphysema
lesions and surrounding lung anatomy. It aids in the comprehension of general distribution pattern of
emphysema disease in the lungs by radiologists. The screen provides clear images for clinical findings.
The lesions can be examined in detail by clinicians with facilities such as interactive rotation and zoom.

Results

The emphysema lesion segmentation and visualization were implemented in Google Colab using
a Tesla T4 GPU, and Python 3.10 with TensorFlow 2.15. This setup allowed us to process many CT
images efficiently. The emphysema regions detected from CT scans were sorted into four groups
namely CLE, PLE, PSE and normal lung tissue. All steps of the work were carried out in a full pipeline
from preprocessing the images, segmenting the lungs, finding lesions and creating 3D views. All these
steps were done on this cloud platform. This made it easy to test the method on different datasets and
get the results.

Lesion Segmentation Results

The lesion segmentation module was built using Python with OpenCV for processing the images,
NumPy for doing calculations and scikit-image for morphological operations. Different threshold values
are used for each class of emphysema because they show different density levels in the images. Binary
masks were made to mark where the emphysema is in the lung tissue. Then the edges of the lesions
were found using contour detection methods.

(€)
Fig 7. Quantified Lesion Boundaries for Emphysema Classes: (a) CLE, (b) PLE, (c) PSE
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Each lesion was classified by how severe it was. It is shown with different-coloured boundaries:
red for severe lesions, orange for moderate ones, and yellow for mild ones. Using different colours
makes it easier for clinicians to understand where the lesions are and how serious they are. Figure 7
shows the severity-coloured lesion boundaries for CLE, PLE and PSE. Figure 8 shows corresponding
binary lesion masks, which confirm that the emphysema areas are located correctly across all
emphysema classes.

CLE - Original Lesion Mask Lesion Boundaries

(@)
PLE - Original Lesion Mask Lesion Boundaries
(b)
PSE - Original Lesion Mask Lesion Boundaries
(€)

Fig 8. Quantified Lesion Segmentation for Emphysema Classes: (a) CLE, (b) PLE, (c) PSE
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Performance Analysis on Lesions

Emphysema lesions were measured and analyzed for all three emphysema classes using detailed
severity classification. Table 3 shows how many lesions were found at each severity level (mild,
moderate, severe) and the total emphysema burden for each class.

Table 3. Emphysema Lesion Delineation

Class Mild (%) Moderate (%) | Severe (%) | Combined (%)
CLE 76.85 15.80 7.35 14.31
PLE 71.71 18.64 9.66 15.64
PSE 66.65 18.40 14.95 19.76

The three emphysema classes showed different patterns of the damage. For CLE, most of the
lesions were mild, and only a small portion were severe. The disease seems more limited and mainly
around the small airways. In PLE, there were again many mild lesions, but the share of moderate lesions
was higher. This suggests that the damage is spread more widely in the lung tissue. In the case of PSE,
we observed highest proportion of severe lesions among the three classes. This is consistent with the
typical paraseptal pattern in which the lung periphery is predominantly involved. Through these
observations, we can see that our segmentation technique is capable of distinguishing among the three
emphysema classes and provide a quantitative measure for how severe the disease is in different parts
of the lung.

Lesion Burden Analysis and Disease Progression Patterns

Image based lesion quantification in this work reveals that disease burden pattern is unique for
each emphysema class, while lesion shape and size also vary with severity. The average number of
lesions per image and the average size of lesions are recorded for all three emphysema types, mild,
moderate, and severe for each class in Table 4.

Table 4. Lesion Burden and Morphology Across Emphysema Classes

Class Avg Severe Lesion | Moderate Mild Lesion
Lesions/Image Size (px) Lesion Size (px) | Size (px)

CLE 61.49 385 185 42

PLE 39.43 520 215 48

PSE 35.1 445 190 45

CLE showed the greatest number of lesions on an image basis (61.49 lesions/image). This
illustrates the undue destruction common for this nature. PLE had moderate lesion count (39.43
lesions/image). Though some (less) severe lesions were very large (520 pixels), implying that they
have for the same number reduced but bigger damaged area of the tissue. PSE showed the lowest
lesion number (35.10 lesions/image), with a large percentage of severe ones too (445 pixels). This
corresponds to the focal damage distribution in paraseptal emphysema. Severe lesions were 8-11
times larger than mild ones for all classes. These numbers demonstrate a distinct pattern for each
emphysema class and confirm that our segmentation method is effective in counting lesions and
measuring their shape and size.
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Fig 9. Correlation Between Lesion Percentage and Lesion Count

From the scatter plot in Figure 9, lesion burden percentage and lesion count are inversely related
among the emphysema classes. CLE has the moderate emphysema rate (14.31%) however, the
highest lesion amounts (61.49 lesions per image). It contains numerous randomly distrbuted little
lesions. PSE is the most loaded (19.76%) and places the smallest number of lesions (35.10 lesions),
which are therefore larger, clustered ones as expected from paraseptal damage. PLE is a compromise
of these two. This inverse relationship demonstrates that a complete evaluation of the disease require

both number and burden measurement, this also indicates characteristic patterns for each emphysema
class.

Three-Dimensional Spatial Visualization of Emphysema Lesions
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(a) (b)
Fig 10. 3D Surface Comparison of Emphysema: (a) CLE, (b) PLE, (c) PSE

3D visualization helps us to better understand how emphysema lesions are arranged and shaped
in different disease classes. Figure 10 shows the volumetric intensity profiles for example CT slices of
CLE, PLE and PSE as elevation maps where the surface height matches the pixel intensity. This
approach shows distinct lesion patterns. CLE has a more diffuse and fine texture. PLE has focal high-

intensity areas more apparent. PSE presents focal hyperattenuated images, characteristic of
paraseptal lesions.
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Fig 11. Spatial Distribution in CLE - Stacked Slice Analysis

Figure 11 demonstrates a stacked 3D reconstruction of sequential CLE slices in top, mid and
bottom lung regions in another patient case. This enables image analysis of emphysema morphology
as a function of anatomy depth. "Layers" demonstrates variation levels and that the disease progresses
spatially in the cranio-caudal direction. This provides full anatomical context, thereby facilitating a better

comprehension of the disease distribution patterns and demonstrates that our method has the ability
to do phenotyping.

Conclusion and Future work

In this study, we propose an automated approach for the segmentation and characterization of
emphysema lesions based on class-specific intensity thresholding in combination with 3D visualization.
The method works well for finding emphysema classes with distinct morphology differences. From the
guantitative results, CLE with the highest number of lesions per image (61.49) presents the lowest
severity burden (14.31%), while PSE with the least number of lesion count (35.10), has highest burden
(19.76%). Using Plotly and Matplotlib with intensity-based segmentation gives better spatial

understanding than normal 2D slice viewing. This helps clinicians in better emphysema diagnosis and
management.

Future work involves extending the framework for full 3D CT datasets in order to analyze complete
lung volumes. Machine learning techniques will be used to automatically set threshold values better for
different scanners. Automatic classification of emphysema phenotypes is also planned to improve
diagnosis accuracy. For clinical use, multi-hospital validation and integration with hospital systems for
real-time work are needed. Augmented reality visualization and disease progression models will help
clinicians manage emphysema patients better.
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