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Abstract

This study presents a hybrid TCN-XGBoost model for predicting daily Feed Conversion Ratio (FCR)
in broiler chicken farming, addressing critical gaps in numerical FCR forecasting using sequential
data. Feed expenses constitute approximately 70% of total operating costs in broiler production, yet
many semi-modern farms in Indonesia still rely on manual, reactive FCR calculations. While existing
research has focused on binary classification or species other than broilers, this study specifically
targets numerical FCR prediction by integrating Temporal Convolutional Networks (TCN) for
temporal feature extraction with Extreme Gradient Boosting (XGBoost) for robust regression. The
research utilized 15 production cycles from Misjiwati Farm in North Sumatra, encompassing daily
metrics of feed intake, body weight, mortality, and FCR. A comprehensive feature engineering
pipeline was developed, incorporating lagged features, rolling window statistics, momentum metrics,
and interaction features to capture both short-term and long-term dependencies. Hyperparameter
optimization using Optuna resulted in optimal configurations: sequence length of 11 days, batch size
of 64, TCN dropout rate of 0.4, and XGBoost with 775 estimators. The model demonstrated
exceptional predictive performance with R? = 0.9532, MAE = 0.0131, RMSE = 0.0169, and MAPE =
1.05%, significantly exceeding thresholds for excellent biological system predictions. Single-step
forecasting validation achieved 0.426% relative error, confirming practical deployment viability.
Residual analysis revealed homoscedastic behavior with a near-zero mean residual (0.006093) and
tight standard deviation (0.015786), validating statistical reliability across all FCR ranges. The model
successfully predicted 92% of values within +2 standard deviations, with only 8.3% exhibiting
residuals exceeding +0.035. This hybrid architecture establishes a scalable solution for precision
poultry farming, enabling proactive feed management interventions and early warning systems for
performance deterioration, offering significant potential for enhancing profitability and sustainability
in Indonesian broiler chicken production.

Keywords: Feed Conversion Ratio, Temporal Convolutional Network, XGBoost, Broiler Chicken
Farming, Time Series Prediction, Feature Engineering.

Introduction

Broiler chickens are among the most extensively cultivated poultry products in Indonesia, attributed
to their swift growth and very brief harvest duration of 4 to 5 weeks. The efficiency of broiler production
is intricately linked to the Feed Conversion Ratio (FCR), defined as the ratio of feed intake to the
resultant weight growth. FCR serves as both a measure of economic efficiency and an indicator of
chicken health. Healthy chickens exhibit weight increase commensurate with feed intake, leading to a
low Feed Conversion Ratio (FCR), whereas birds subjected to stress, infection, or metabolic
abnormalities typically demonstrate a high FCR value.

Given that feed expenses constitute approximately 70% of total operating costs, enhancing Feed
Conversion Ratio (FCR) is vital for augmenting profitability and sustainability in broiler chicken farming
(Amrullah et al., 2024). Regrettably, some semi-modern farms in Indonesia continue to do FCR
calculations manually, relying on feed consumption statistics and chicken weight obtained from
sampling.
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This approach is reactive, as farmers can only identify a drop in performance subsequent to a
deterioration in the FCR value. Conversely, the continuous monitoring of environmental variables, such
as temperature and humidity within the coop, is infrequently achieved due to infrastructural and financial
constraints, despite the considerable influence these conditions exert on the hens' appetite, growth,
and health Johansen et al. (2021) underscore the significance of temperature regulation via the Norm
Optimal Terminal lterative Learning Control (TILC) methodology, utilizing dynamic neural networks,
which has demonstrated a reduction in FCR of 1.4-5.9%. This strategy presupposes the availability of
comprehensive environmental data, which is not consistently accessible in practical field conditions.

In recent years, machine learning has been extensively employed to enhance decision-making in
broiler chicken production. Hasdyna (2024) employed the Naive Bayes algorithm to categorize broiler
chicken production outcomes as “profitable” or “loss-making,” with an accuracy of 86.67%. This study,
while accurate, was confined to binary classification and did not directly assess FCR values. Gustian
et al. (2019) created a Naive Bayes-based expert system demonstrating a high accuracy of 96.36%
using many evaluation approaches. This technique effectively aids in the preliminary classification of
production feasibility; however, it does not incorporate quantitative FCR value projections or leverage
daily performance data in a time-series format. Rifaldo Al Magribi et al. (2023)employed the C4.5
decision tree method to categorize broiler chicken production success rates into three classifications
(very good, good, and poor), achieving an accuracy of 97.11%. This study effectively identified FCR as
the predominant attribute in classification; however, it was constrained to categorization based on
performance index (PI) rather than numerical FCR prediction.

Studies on many species demonstrate the capability of machine learning in predicting numerical
Feed Conversion Ratios (FCR). Yang et al. (2025a)employed nineteen machine learning methods,
including Gradient Boosting, LightGBM, and CatBoost, to forecast long-term Feed Conversion Ratio
(FCR) utilizing short-term FCR data in swine. In a dataset of 438,552 feed records from two farms in
Sichuan, China, Gradient Boosting demonstrated superior performance with R? = 0.51, RMSE = 0.09,
MAE = 0.07, and MAPE = 0.03. FCR forecasts attained optimal accuracy (R?= 0.72, Pearson correlation
= 0.85) within the 50—-90 kg weight range, indicative of the pigs' accelerated growth period. Despite the
encouraging results, the study was confined to pigs and necessitates more validation for applicability
to broiler chicks.

Furthermore, current studies underscore the significance of feed intake (Fl) patterns and
environmental variables in influencing chicken growth efficiency. Jie et al. (2024) discerned three
dynamic feed intake patterns in 4—-6-week-old broiler chickens by the K-means clustering approach,
revealing that the pattern of escalating feed intake was consistently positively connected with enhanced
body weight gain and reduced feed conversion ratio. Quintana-Ospina et al. (2023) examined data from
over 95 million broiler chickens in Colombia, demonstrating that high efficiency (HE) groups were
attained via feed restriction in the initial weeks, succeeded by an increase in the latter weeks, leading
to improved feed conversion ratio (FCR) and reduced mortality. Li et al. (2024a)investigated laying hens
through a multi-omics and machine learning methodology, revealing that environmental factors (relative
humidity, NH;, CO;) and genetic factors strongly influenced FCR variation. The Random Forest
prediction model in the study attained a high accuracy (R? > 0.88). These three studies affirm that
feeding index patterns, nutritional methods, and genetic-environment interactions are critical aspects to
examine in feed conversion ratio analysis.

Nutritional considerations have been demonstrated to influence feed efficiency. Abdipour et al.
(2025) demonstrated that minerals including calcium, phosphorus, and zinc influence feed conversion
ratio (FCR) via alkaline phosphatase (ALP) enzyme activity, with the Artificial Neural Network (ANN)
model attaining a prediction accuracy of R? = 0.95 and Gradient Boosting achieving R? = 0.81. The
meta-analysis substantiates the significance of the nutrition-FCR association across diverse agricultural
settings, despite the sometimes unavailability of environmental data like as temperature and humidity.
These studies indicate that despite the application of machine learning, the majority concentrate on
category classification, are restricted to species other than broilers, or depend on environmental and
nutritional data that is not routinely accessible in local farms.
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Table 1. Overview of Prior Investigations on FCR Prediction and Analysis

Subjects Analytical Approach | Primary Findings Constraints

Broiler Chicken Naive Bayes Profit/loss classification | Only binary

(Hasdyna, 2024) accuracy: 86.67% classification, no
numerical
prediction of FCR

Broiler Chicken Naive Bayes, | High accuracy of 96.36% No FCR \value

(Gustian et al., | Expert System prediction,  time-

2019)

series data not yet
utilized

Broiler Chicken
(Rifaldo Al Magribi

C4.5 Decision Tree

Accuracy 97.11%; FCR most

influential attribute

Only  categorical
classification based

etal., 2023) on performance
index
Pig Farming Gradient Boosting, | Long-term FCR prediction, R2 = | Focus on pigs,

(Yang et al., 2025)

LightGBM,
CatBoost

0.72

limited to certain
areas

Broiler Chicken
(Jie et al., 2024)

K-means clustering

Identify 3 Feed Intake (FI)
patterns; consistent increase in
FI — higher BWG & lower FCR

Small sample (274
individuals),  only
males, late stage

Broiler Chicken | Decision Tree + | High efficiency is achieved with | Observational data,
(Quintana-Ospina model non-linier initial feed restriction + final | focusing on the 35-
etal., 2023) compensation; logistic model R? | day cycle

>0.99
Laying Hens Random Forest + | Accurate FCR prediction (R* > | Particular to a

(Li et al., 2024) RNA-seq 0.88); significant environmental | single race/age
and genetic factors group, lacking
external validation
Broiler Chicken ANN, Gradient | Minerals (Ca, P, Zn) affect FCR; | Depends on
(Abdipour et al., | Boosting ANN is accurate (R? = 0.95) complete nutritional
2023) data, without
environmental data
Broiler Chicken | TILC neural | Temperature control reduces | Complete
(Johansen et al., | network based FCR by 1.4-5.9% temperature  data
2021) assumptions  are

difficult to apply in
the field

As outlined in Table 1, while earlier investigations have addressed various aspects of feed
conversion ratio through classification, feed consumption patterns, nutritional factors, and genetic-
environmental interactions, there has yet to be a study that specifically forecasts the numerical value of
feed conversion ratio in broiler chickens by combining tabular data with daily sequential data. This study
addresses the existing gap by creating a hybrid model that integrates Extreme Gradient Boosting
(XGBoost) and Temporal Convolutional Network (TCN) to generate FCR predictions that are more
accurate, generalizable, and applicable to broiler farm management in Indonesia.

Method

Figure 2 presents the TCN-XGBoost Hybrid Model Architecture, a complex framework for time-
series forecasting specifically designed for predicting broiler chicken feed conversion ratio (FCR). This
model employs Temporal Convolutional Networks (TCN) for effective temporal feature extraction
through dilated convolutions, as substantiated by foundational studies such as Bai et al. (2018) and
Lara-Benitez et al. (2020). Additionally, it incorporates XGBoost regressors for robust multi-output
predictions, leveraging hybrid achievements in battery estimation and agricultural applications (Yang et
al. 2025). This diagram illustrates input processing utilizing lag/rolling features, TCN layers with ReLU
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and dropout, hybrid integration through ensemble weighting, and multi-horizon outputs assessed by
MSE/MAE/R?, consistent with ensemble methodologies (Wang et al. 2025) and interpretability
frameworks (Maestrini & Basso 2021).

TCN-XGBoost Hybrid Model Architecture

Temporal Convolutional Network with XGBoost Integration for Time Series Forecasting

Temporal Convolutional
ConviD ConviD
Ditation=1 Dilation=2

Output Predictions
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Figure 2. Daily FCR Forecasting Model Pipeline Diagram
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This architectural visualization highlights the synergistic advantages of TCN's parallelizable,
memory-efficient design for capturing phenological dynamics (Tsuchiya & Sonobe, 2025; Hewage et
al.,, 2021) and XGBoost's outlier-resistant regression for livestock metrics (Davison et al., 2025;
Fonseca et al., 2025), underpinned by multi-horizon forecasting (Zhu et al., 2025) and k-fold validation
(Gupta et al., 2024). The model's training pipeline, encompassing data preparation to serialization,
facilitates actionable insights using SHAP/LIME, establishing it as a scalable solution for precision
poultry farming, as demonstrated in the 41 analyzed studies.

Data Acquisition on Broiler Chicken Agriculture

This research utilizes secondary data provided by Misjiwati Farm, an official partner of PT. Indojaya
Agrinusa (Japfa Group) in North Sumatra. The dataset encompasses 15 intervals of broiler chicken
rearing within a controlled housing system.

The daily recorded metrics encompass feed intake, body weight, mortality/depletion, Feed
Conversion Ratio (FCR), performance index (PI), and chicken balance. The Feed Conversion Ratio
(FCR) is determined by the proportion of total feed intake to the increment in chicken body weight during
a certain duration.

This study utilized feed conversion ratio (FCR) as the dependent variable, with feed intake, body
weight, and mortality serving as independent factors. Due to the unavailability of internal environmental
data (e.g., housing temperature and humidity), this study employed feed intake and body weight as
proxy variables to assess the impact of the environment on broiler chicken performance.

Unprocessed Data Depiction

The unprocessed data represent essential operational data gathered daily within poultry farming
practices. This data encompasses all essential elements of farm management and serves as the basis
for creating predictive models via enhanced feature engineering techniques. The data from Misjiwati
Farm is insufficient, particularly regarding the close house environmental parameters like temperature
and humidity.

Table 2. Unprocessed Data Explanation

Data Category

Data Features

Overview

Fundamental details and
schedule

date_record

Date of data collection

age

Days since hatching of chickens

perf_index_actual_daily

Development Period
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Chicken population data

starting_chickens

Initial count of chickens at the start
of the period

ending_chickens

Count of chickens by day's end

mortality_number

Daily mortality numbers of chickens

Mortality data

depletion_amt

Total daily depletion (including both
dead and culled individuals)

cum_depletion_pct

Percentage of cumulative depletion

std_cum_depletion_pct

Cumulative standard

percentage

depletion

Standard Feeding Data

std_feed_bags_daily

Daily feed allocation (in bags)

std_feed_gr_head_daily

Standard feed
chicken (grams)

allocation per

cum_std feed gr head_daily

Grams of cumulative standard feed
per chicken

Actual Feeding Data

actual_feed_bags_daily

Current daily feed consumption (in
bags)

cum_actual_feed bags_daily

Total feed accumulated (in bags)

actual_feed_gr _head_daily

Actual bird

(grams)

feed allocated per

cum_actual feed gr head_daily

Total feed intake per bird (grams)

Feed Difference Data —
Delta/Difference

delta_feed_bags

Discrepancy between real and

expected feed (bags)

delta_feed gr head

Variation in feed allocation per bird
(grams)

cum_delta_feed_ gr _head

Variation in total feed per bird
(grams)

Weight & Growth Data —
Standard

weight_avg_std_daily

Standard for Average Body Weight
(grams)

weight_gain_std_daily

Standard Daily Gain (grams)

Weight & Growth Data —
Current

weight_avg_act_daily

Actual
(gram)

Average Body Weight

weight_gain_act_daily

Actual Daily Gain aktual (gram)

Weight & Growth Data —
Delta/Difference

avg_delta_weight_daily

Discrepancy between observed
and normative body weight

weight_gain_delta_daily

Discrepancy between observed
and expected daily gain

Data Feed Conversion
Ratio (FCR)

fcr_std_daily

Standard Feed Conversion Ratio

fcr_act_daily

Actual Feed Conversion Ratio

fcr_delta_daily

The distinction between actual and
standard Feed Conversion Ratio
(FCR)

Data Performance Index
(IP)

perf_index_std_daily

Standard Performance Index

perf_index_act_daily

Actual Performance Index
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The unprocessed data constitute essential operational records gathered daily in poultry farming,
encompassing key elements of farm management and providing a basis for the development of
predictive models via feature engineering. Table 2 presents a comprehensive overview of the dataset,
encompassing chicken population, feed allocation, growth performance, mortality rates, and efficiency
metrics, including Feed Conversion Ratio (FCR) and Performance Index (Pl), evaluated against
standard references and actual field results. The incorporation of delta features, which represent the
disparity between standard and actual values, improves the dataset by emphasizing deviations from
production targets. Nonetheless, a significant limitation is the lack of environmental parameters,
including temperature and humidity. The study utilizes proxy variables based on daily feed intake and
body weight records to address this issue. This dataset provides a comprehensive representation of
broiler farm operations and serves as a foundation for advanced feature engineering and the
development of accurate, adaptable FCR prediction models.

Algorithm Development Environment and Software

This study involved algorithm development on a 16-inch MacBook Pro M1 Pro, featuring an 8-core
CPU and 14-core GPU, released by Apple in 2021, selected for its capacity to manage the intensive
computing and parallel processing demands of machine learning and deep learning experiments.

The programming language employed was Python, supplemented by other libraries. Pandas and
NumPy facilitated data manipulation and analysis, whilst SciPy provided help for statistical analysis.
During the machine learning phase, modeling and evaluation were facilitated using scikit-learn, which
included RobustScaler, KFold, and evaluation metrics such as MSE, MAE, MAPE, and R2. TensorFlow
and Keras, use the Model API, Dense layer, and EarlyStopping, construct the deep learning
methodology. Moreover, specialized libraries like as TCN for Temporal Convolutional Networks and
XGBoost for gradient boosting are utilized. The visualization technique employs matplotlib and seaborn
to facilitate data exploration and the presentation of experimental results, hence supporting the
interpretation of findings.

Feature Engineering

The raw dataset, however instructive, fails to properly reflect the temporal dynamics and intricate
linkages inherent in broiler chicken production. To improve predictive accuracy, the dataset was
augmented via methodical feature engineering, categorized into five groups: (i) fundamental features
and interpolation, (ii) lagged features, (iii) rolling window statistics, (iv) momentum, acceleration, and
trend slope, and (v) interaction and efficiency features. This technique converts unprocessed records
into temporally-aware predictors that can represent both short-term and long-term dependence.
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Domain- Specific Features
- Health Score
- Growth Index
- Feed Effic.
- Growth Stage

Preprocessing

)

FEATURE_CONFIG
- lag_periods: [1,2,3,7,14]

Trend Features
- Momentum

- decimal_places: 3

Finishing Pipeline

Interaction Features
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- AGE_SOUARED
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- Mean
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- FCR_ACT
- PAKAN_ACT
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= JML_DEPLEST
- ABW_ACT
DELTA_*

Figure 1. Feature Engineering Pipeline Architecture
Base Features and Interpolation

Essential variables encompass daily age, population size, depletion, feed consumption, and body
weight. Missing values in body weight measurements, not recorded daily, were imputed by linear
interpolation to create a continuous time series. This stage guarantees data integrity and dependability
for further sequential modeling.

Lagged Feature

Historical Dependency Features (LagFeatures) were developed to represent variable values from
multiple  preceding days. Examples are fcr_act lag1, weight gain_actual lag1, and
mortality number_lag1. The significance of these features lies in the fact that a chicken's performance
is not isolated; rather, it results from the accumulation of conditions over several preceding days.

Xiagh(t) = X(t — k) (1)

In time series analysis, ttt represents the current time (for example, day ttt), while kkk is the lag
period, such as 1, 2, 3, 7, or 14 days. The notation X(t—k) refers to the original feature value observed
k time steps before the current time, and X_lagk(t) represents the feature value at time (t) when shifted
by a lag of (k). In other words, lag features are created by taking past observations and using them as
inputs to help predict the present or future values.

Table 3. Lagged Feature Collection

Variabel Base Fitur Lagged
fer_act fcr_act_lag1,

fcr_act_lag?,

fcr_act _lag14
actual_feed_grams_ feed_actual gr _head lag14
head_daily
weight_gain_act_daily weight_gain_actual_lag1,

weight_gain_actual_lag2,
weight _gain_actual_lag3,
weight _gain_actual_lag?,
weight _gain_actual_lag14

mortality_number mortality_number_lag1, mortality_number_lag2,
mortality_number_lag3, mortality_number_lag7,
mortality_number_lag14
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Variabel Base Fitur Lagged

delta_feed_gr _head delta_feed gr head_lag1, delta_feed gr head_lag2,
delta_feed gr head_lag3, delta_feed gr head_lag7,
delta_feed gr head lag14

weight_gain_delta_daily weight_gain_delta_lag1, weight_gain_delta_lag2,
weight_gain_delta_lag3, weight_gain_delta_lag7,

weight_gain_delta_lag14

feed_efficiency feed_efficiency lag 1

Rolling Statistic Feature

This study developed a series of rolling window features to effectively capture the dynamics of
chicken performance that daily values alone cannot represent. The features were computed utilizing
defined time windows (e.g., 3, 7, or 14 days) to characterize short- and medium-term trends and identify
instability throughout the rearing period. The rolling mean value serves to emphasize trends in growth,
feed consumption, and mortality, whereas the rolling standard deviation indicates the degree of volatility
or instability associated with these variables. Furthermore, rolling minimum and maximum values are
employed to identify extreme events, such as mortality spikes or substantial growth declines, which
frequently serve as early indicators of management or health issues. Rolling window features enhance
data representation and improve the model's sensitivity in detecting fluctuating patterns and potential
anomalies in systems for maintaining broiler chickens.

RollingMean,, (t) =~ X! X (t — i) )

RollingStd,, (t) = \[% YW L(X(t — i) — RollingMean,, (t))?
3)

The rolling mean calculates the average of feature values over a time window w. The rolling
standard deviation measures the variability of values within the same window. Here, w is the window
size in days, t is the current day, and X(t-i) represents the feature value at day (t-i).

Table 4. Rolling Statistic Feature Collection

Variabel Base Rolling Statistics Feature

actual_feed_grams_head_daily ||actual_feed_grams_head_daily _rolling_std_3,
actual_feed_grams_head_daily _rolling_std_7,
actual_feed_grams_head_daily _rolling_std_14

weight_gain_act_daily weight_gain_act_daily_rolling_mean_3,
weight_gain_act_daily_rolling_std_3,
weight_gain_act_daily_rolling_min_3,
weight_gain_act_daily_rolling_max_3,
weight_gain_act_daily_rolling_std_7,
weight_gain_act_daily_rolling_min_7,
weight_gain_act_daily_rolling_std_14,
weight_gain_act_daily_rolling_min_14

mortality_number mortality_number_rolling_mean_3, mortality_number_rolling_std_3,
mortality_number_rolling_min_3, mortality_number_rolling_max_3,
mortality _number_rolling_mean_7, mortality_number
_rolling_std_7, mortality_number_rolling_min_7,
mortality _number_rolling_max_7,
mortality_number_rolling_mean_14,
mortality_number_rolling_std_14,

mortality_number_rolling_min_14,
mortality_number_rolling_max_14
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Variabel Base Rolling Statistics Feature

delta_feed_gr _head delta_feed gr _head_rolling_mean_3,
delta_feed _gr _head_rolling_std_3,
delta_feed _gr _head_rolling_min_3,
delta_feed gr _head_rolling_max_3,
delta_feed_gr_head_rolling_mean_7,
delta_feed_gr_head_rolling_std 7,
delta_feed_gr_head_rolling_min_7,
delta_feed_gr_head_rolling_max_7,
delta_feed_gr_head_rolling_mean_14,
delta_feed gr _head_rolling_std_14,
delta_feed _gr _head_rolling_min_14,
delta_feed_gr _head rolling_max_14

weight_gain_delta_daily weight_gain_delta_daily_rolling_mean_3,
weight_gain_delta_daily_rolling_min_3,
weight_gain_delta_daily_rolling_max_3,
weight_gain_delta_daily_rolling_mean_7,
weight_gain_delta_daily rolling_std_7,
weight_gain_delta_daily_rolling_min_7,
weight_gain_delta_daily_rolling_max_7,
weight_gain_delta_daily_rolling_mean_14,
weight_gain_delta_daily_rolling_std_14,
weight_gain_delta_daily_rolling_min_14

Engineering Features of Change Dynamics (Momentum, Acceleration, and Trends)

This feature category aims to quantify the rate of change of a variable rather than merely its static
value. This method is crucial as broiler chicken performance is affected not only by immediate
conditions but also by daily fluctuations. The three primary dimensions established are momentum,
acceleration, and local trend tendencies.

Momentum of Transformation (Momentum).

Momentum quantifies the velocity and orientation of change between days, analogous to first-order
differentiation.

The features weight gain_momentum_1 and actual_feed_grams_head_daily rolling_std_3
indicate the rate of change in chicken growth and environmental temperature, respectively, relative to
the previous day. The formula is articulated as follows:

Momentum,(t) = X(t) — X(t —1) (4)

The momentum at day t is the difference between the current day's value X(t) and the previous
day's value X(t-1). This shows the daily change in the feature value.

Acceleration of Change (Acceleration)

Acceleration is determined using second-order differentiation, representing the variation in
momentum. This function can identify inflection moments, such as when the growth rate commences
to decelerate or when chicken mortality escalates significantly. The employed formula is:

Acceleration(t) =
Momentum, ) — Momentum,_q) (5)

The acceleration at day t is calculated from the momentum values. Momentum at day t represents
the change in value on the current day, while momentum at day (t-1) represents the change in value
from the previous day. The acceleration shows how the rate of change itself is changing over time.

Local Trend Slope

Simple linear regression was utilized to capture short-term trends within specified time windows
(e.g., 3-day periods). Engineered features such as mortality amount trend slope 1 and
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actual_feed_grams_head_daily_trend_slope_3 indicate both the direction (positive or negative) and
magnitude of temporal trends. The mathematical formulation is presented as follows:

[n X Z(time X X) — Z(time) X Z(X)]

b= [n X Z(time?) — (E(time))z] ©)

The slope coefficient measures the trend in the data over time. It is calculated using n data points,
where x represents the time sequence (0, 1, 2, etc.) and y represents the feature values being analyzed.
The formula calculates how much the feature value changes over time, showing whether the trend is
increasing, decreasing, or stable.

a. Interaction and Efficiency Features.

The fundamental factors encompass daily age, population size, depletion rate, feed consumption,
and body weight. Missing values in body weight measurements, recorded intermittently, are imputed
using linear interpolation to create a continuous time series. This stage guarantees the integrity and
dependability of the data for subsequent sequential modeling.

Feed_weight_gain_ratio
actual_feed_grams_ratio (7)

- (weight_gain_actual_daily + ¢€)

The actual feed consumption in grams per head represents the amount of feed consumed by each
animal in grams. The weight gain actual daily refers to the actual daily weight gain of the animal, also
measured in grams. A small constant epsilon is included in the calculation to prevent division by zero
errors.

b. Feed Efficiency Lagged Feature

By using the efficiency values from the previous day, the model can learn from the current
efficiency levels. This allows for continuous improvement and adaptation to changing conditions.
Consequently, the model becomes better at predicting future performance, leading to optimized
operations and resource allocation.

1
fer_act_lag(t) + €

feed_efficiency_lag(t) = (8)

The feed efficiency lag is calculated by dividing 1 by the actual FCR value from the previous day
plus a small constant. The small constant (epsilon) is added to prevent division by zero errors in the
calculation.

Data Normalization with Robust Scaler

Robust scaling is implemented because certain data, like mortality statistics and daily weight
growth, are vulnerable to extreme values or outliers. In contrast to normal scaling, which relies on the
mean and standard deviation, robust scaling utilizes the median and interquartile range (IQR), rendering
it more resilient to distortions from outliers. The change is characterized as:

X — median

Xscatea = W03=01) 9)

The scaled feature value is calculated by subtracting the median from the original value and then
dividing by the interquartile range, which is the difference between the third quartile (Q3) and the first
quartile (Q1). In this scaling method, X represents the original feature value, while the median is the
middle value of the entire sorted dataset. Q1 is the first quartile at the 25th percentile, meaning 25% of
the data falls below this value. Q3 is the third quartile at the 75th percentile, meaning 75% of the data
falls below this value. The result, X_scaled, represents the standardized feature values after applying
this robust scaling technique.
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Temporal Convolutional Network (TCN)

The Temporal Convolutional Network (TCN) was chosen in this study because of its capacity to
handle time-series data efficiently and stably in the context of predicting daily broiler chicken
performance. Through the application of dilated convolution and residual blocks, TCN effectively
enlarges the receptive field, enabling the recording of growth patterns, feed intake, mortality, and FCR
dynamics in both the short and medium term. In contrast to LSTM or GRU, which are susceptible to
vanishing gradients, TCN is more straightforward to train while ensuring prediction stability, even with
constrained datasets. This combination renders TCN optimal for constructing resilient and adaptable
FCR prediction models for differences in broiler chicken management (Nurul Wathani et al., 2025; Yan
et al., 2020)

Extreme Gradient Boosting (XGBoost)

XGBoost is a technique that enhances gradient boosting decision trees, known for their efficiency
in constructing boosted trees. XGBoost is a machine learning technique employed to address
regression and classification challenges through Gradient Boosting Decision Trees (GBDT). XGBoost
is a boosting methodology comprising many interdependent decision trees, where each tree is
enhanced by its predecessor and successor. During classification, XGBoost adjusts the weights of each
constructed tree to achieve a robust classification tree (Dava Maulana et al., 2023) XGBoost was
selected due to its proficiency in handling tabular data, resilience to incomplete datasets or outliers, and
capability to deliver feature importance insights for identifying the variables that most significantly impact
FCR predictions. These advantages make XGBoost a popular choice among data scientists and
machine learning practitioners. Moreover, its ability to perform efficiently on large datasets while
maintaining accuracy further cements its status as a leading algorithm in predictive modeling tasks.

K-Fold Cross Validation

In the context of poultry farming data, where multiple independent production cycles (periods) are
analyzed, K-fold cross-validation (CV) can be effectively applied without violating temporal
dependencies, as these cycles often represent distinct, non-continuous time series akin to panel data
structures. For instance, in a study on maize yield forecasting in Sub-Saharan Africa, researchers
contrasted panel data models with time-series models and utilized various cross-validation methods,
including random K-fold and leave-district-out approaches, to evaluate performance across spatial and
temporal dimensions (Lee et al., 2023). This highlights how panel data, characterized by short time
horizons within each cross-sectional unit (e.g., farms or periods), allows for K-fold CV to provide robust
estimates by treating cycles as exchangeable units, especially when spatial features like soil properties
or livelihood zones are incorporated to capture variability without assuming long-term serial correlation.

Similarly, in poultry performance prediction, where datasets consist of short-term sequences (e.g.,
daily metrics over 35-88 days per cycle), K-fold CV has been employed to assess model accuracy for
outcomes like growth and mortality. A Scopus-indexed study on feature-driven optimization for Taiwan
native broilers used multiple machine learning models evaluated across cross-validation folds,
emphasizing the role of temporal features such as "Day" as the most influential predictor while achieving
low RMSE through ensemble neural networks (Suhendra et al., 2025). The choice of K-fold here is
justified by the biological repeatability of poultry cycles, where patterns are constrained by standardized
management practices, reducing the risk of data leakage compared to continuous, long-range time
series like economic indicators.

Furthermore, when temporal dependencies are explicitly encoded as features such as lags, rolling
statistics, and sequence embeddings from models like TCN K-fold CV becomes suitable even for
sequential data, as the reshuffling does not erode the embedded temporal information. This aligns with
findings in genomic prediction for animal breeding, where paired K-fold CV was recommended for
assessing model differences in short time-series panels, demonstrating statistical power without
requiring strict chronological splits (Schrauf et al., 2021). In this study on FCR prediction, which involves
13 independent periods and short-sequence dependencies spanning 11 days, the method employed
guarantees a variety of training folds while maintaining cycle-specific patterns. This makes it a viable
alternative to traditional time-series cross-validation techniques that may excessively limit data
availability.

Regression Metrics

The regression model's performance evaluation in this study utilized four primary metrics: Mean
Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R-Squared
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(R?). MAE quantifies the average absolute deviation between the expected and actual values, offering
a clear representation of the discrepancy between them. The Mean Squared Error (MSE) computes the
average of the squared prediction errors, rendering this measure particularly sensitive to outliers and
proficient at identifying substantial errors. RMSE, being the square root of MSE, maintains the same
units as the target variable, hence enhancing the interpretability of the prediction error's magnitude. R?,
or the coefficient of determination, indicates the proportion of variation in the real data that the model
can elucidate; a value closer to 1 signifies superior predictive capability of the model (lhzaniah et al.,
2023). These four measures are utilized in conjunction to deliver a thorough assessment, as each
emphasizes distinct facets of model performance.
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Model Training and Optimization

In this study, hyperparameter optimization was conducted utilizing Optuna, a sophisticated and
effective framework for hyperparameter optimization. Optuna was selected for its capability to
autonomously optimize hyperparameters with the Tree-structured Parzen Estimator (TPE) algorithm,
which efficiently identifies the optimal combination with a small number of trials. Moreover, Optuna
features a pruning system that facilitates the early cessation of unpromising experiments, thus
conserving time and processing resources. Another benefit of Optuna is its adaptability in dynamically
establishing the hyperparameter search space during execution, along with its straightforward
configuration, suitable for both basic experiments and distributed computing environments (Akiba et al.,
2019).

This study involved separate optimization for the two employed models: Temporal Convolutional
Network (TCN) and XGBoost. The parameters optimized for TCN encompassed the number of layers,
kernel size, dropout rate, and learning rate. Simultaneously, with XGBoost, the optimization
concentrated on parameters like max_depth, learning_rate, n_estimators, and subsample. This
approach aims to yield an ideal model configuration regarding prediction accuracy and computing
efficiency.

Table 5. Results of Parameter Optimization Utilizing Optuna

Model Components Hyperparameters Optimal Value
Architecture sequence_length 11
batch_size 64
TCN nb_filters 32
kernel_size 3
nb_stacks 1
dilations [1.2, 4]
dropout_rate 04
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Model Components Hyperparameters Optimal Value
optimizer adamw
spatial_dropout 0.2
kernel_regularizer L2
kernel_regularizer_strength 1e-4
learning_rate 1e-4
weight_decay 1e-3
gradient_clip_norm 0.5

XGBoost n_estimators 775
objective RMSE
learning_rate 0.170
max_depth 6
subsample 0.98
colsample_bytree 0.90
reg_alpha 0.184
reg_lambda 0.705
random_state 42
n_jobs -1

According to the outcomes of hyperparameter optimization via Optuna, the TCN model achieved

optimal configuration with a sequence length of 11, a batch size of 64, a dropout rate of 0.4, and a
learning rate of 1e-4 utilizing the Adam optimizer. XGBoost achieved optimal performance with 775
estimators, a maximum depth of 6, a learning rate of 0.170, and a subsample rate of 0.98. These
settings were selected to achieve a balance between bias and variance while mitigating the risk of
overfitting.

Result

To assess the efficacy of machine learning models in agricultural applications, particularly for
optimizing resource use in poultry farming, this study employs a TCN-XGBoost hybrid regression model
to forecast the Feed Conversion Ratio (FCR) a critical indicator of feed efficiency in broiler chickens
drawing on historical data encompassing factors such as age, feed intake, and weight gain. Model
performance is rigorously evaluated through established regression metrics including Mean Absolute
Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R-squared (R?),
alongside visual diagnostics via scatter plots and histograms to examine prediction alignment, residual
patterns, and error distributions, enabling a comprehensive understanding of predictive strengths and
potential limitations for informed decision making in farm management.

Table 6. Table of Model Evaluation Results with Optuna Hyperparameters

Categories Metrics Value

Error Metrics MAE 0.013069
MSE 0.000286
RMSE 0.016921

Model Performance R2? Score 0.953242
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0.006093
0.015786

Mean Residual
Std. Residual

Residual Metrics

The evaluation of the Temporal Convolutional Network (TCN) model yielded commendable
performance, reflecting how effectively automation identifies optimal configurations with
hyperparameters optimized using the Optuna framework. The Optuna optimization process allows for
iterative adjustments to hyperparameter combinations such as kernel_size, num_filters, num_layers,
and dropout, which were previously manually adjusted on the dataset. Table 6 presents the model
performance evaluation results and visualizes them in an evaluation matrix that includes various
performance metrics.

Table 7. Table of Model Prediction Results with Optuna Hyperparameters

PERIOD | AGE |£ip™=  |for = |Emer T |Ewer = |Emer -
14 12| 1.087 1.08388925 0.00311075 | 9.67679E-06 | 0.286177922
14 13 |11 115177441 | 0.04177441 | 0.001745101 | 3.763460039
14 14 | 1.124 1.1415143 0.0175143 | 0.000306751 | 1.558211859
14 15 1114 1.14333725 0.00333725 | 1.11372E-05 | 0.292741207
14 16 | 1.156 1.16397405 0.00797405 | 6.35854E-05 | 0.689796428
14 17 | 1.173 1.17608929 0.00308929 | 9.54369E-06 | 0.263366309
14 18 | 1.187 118192017 | 0.00507983 | 2.58047E-05 | 0.427955284
14 19 ] 1.196 1.19350076 0.00249924 | 6.24621E-06 | 0.208966788
14 20 | 1.212 1.19121528 0.02078472 | 0.000432005 | 1.714911162
14 21 | 1.228 1.2083919 0.0196081 | 0.000384477 | 1.596750421
14 22 | 1.242 1.234254 0.007746 6.00005E-05 | 0.623671291
14 23 | 1.256 1.24581742 0.01018258 | 0.000103685 | 0.81071474
14 24 1 1.263 1.26254988 0.00045012 | 2.02611E-07 | 0.035639179
14 25 11274 1.26098144 0.01301856 | 0.000169483 | 1.021864949
14 26 | 1.287 1.28075302 0.00624698 | 3.90248E-05 | 0.485391106
14 27 | 1.303 1.28331614 0.01968386 | 0.000387455 | 1.510657298
14 28 | 1.32 1.29189146 | 0.02810854 | 0.00079009 | 2.129435178
14 29 11329 1.31697977 0.01202023 | 0.000144486 | 0.904457043
14 30 ] 1.323 1.31041229 0.01258771 | 0.000158451 | 0.951452176
14 31 1.341 1.30366576 0.03733424 | 0.001393846 | 2.784059867
14 32 11305 1.31502175 0.01002175 | 0.000100436 | 0.767950445
14 33 | 1.327 1.3168447 0.0101553 | 0.00010313 | 0.765282459
14 34 1333 1.31234097 0.02065903 | 0.000426795 | 1.549814343
14 35 1319 1.31833386 0.00066614 | 4.43737E-07 | 0.050503092

Table 7 delineates a comparison of the actual and anticipated values of FCR (Feed Conversion
Ratio) for multiple intervals (period 14), including specifics on absolute error, squared error, and
percentage error. In period 14, with an age of 12, the actual FCR value of 1.087 has a predicted value
of 1.08388925, resulting in an absolute error of 0.00311075 and a percentage error of 0.286177922%,

1284



Architectural Image Studies, ISSN: 2184-8645

demonstrating an exceptional level of accuracy that surpasses the low error rates achieved in machine
learning models for broiler growth and FCR prediction. The model's average performance is assessed
using metrics including Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean
Squared Error (RMSE), as detailed in the evaluation matrix (Table 6), which aligns with standard
evaluation practices in poultry production forecasting where such metrics validate model reliability for
traits like weight gain and feed efficiency (Adli et al., 2025; Yang et al., 2025a).

The assessment matrix indicates a Mean Absolute Error (MAE) of 0.013069, a Mean Squared
Error (MSE) of 0.000286, and a Root Mean Squared Error (RMSE) of 0.016921 values that compare
favorably to those reported in XGBoost-based predictions for environmental and growth factors in
closed-house broiler systems, where RMSE ranges around 0.02-0.04 underscore high predictive
precision. The model attained an R? score of 0.953242, demonstrating its proficiency in elucidating data
variability, consistent with R? values up to 0.95 in similar ML applications for livestock metrics. The
residual statistics indicate a mean residual of 0.006093 and a residual standard deviation of 0.015786,
so they affirm the stability of the forecast, further supporting the model's robustness in handling time-
series dependencies in poultry data. This outcome validates that hyperparameter optimization using
Optuna markedly enhances model performance relative to earlier manual methods, utilizing the
intricacy of 115 columns and 439 rows of data to produce superior configurations, mirroring
improvements seen in agricultural ML frameworks where Optuna tuning yields 10-15% better accuracy
in regression tasks for yield and nutrient predictions.

Actual vs Predicted FCR Scatter Plot Analysis
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Figure 4. Graphical Comparison of Actual and Predicted Values

The developed hybrid TCN-XGBoost model demonstrated excellent predictive performance in
forecasting Feed Conversion Ratio (FCR) for broiler chickens. Model evaluation was conducted using
24 test samples from a complete rearing cycle (Period 14, age 12-35 days), covering the critical growth
phases from starter to finisher periods.

The model achieved a coefficient of determination (R?) of 0.9532, indicating that 95.32% of the
variance in actual FCR values could be explained by the model predictions. This performance
significantly exceeds the threshold for excellent model performance (R? > 0.90) in biological system
time series prediction contexts. The Mean Absolute Error (MAE) was 0.0131, with a Root Mean Square
Error (RMSE) of 0.0169, translating to a Mean Absolute Percentage Error (MAPE) of 1.05%, which
indicates an average prediction deviation of only 1% from actual values (Naeem et al., 2025; Yang et
al., 2025a).

Figure 4 presents the scatter plot of predicted versus actual FCR values, demonstrating a strong
linear relationship with data points closely aligned to the perfect fit diagonal line. The model successfully
predicted FCR within the range of 1.084-1.318, accurately covering the actual FCR range of 1.087-
1.341 observed in the field. The distribution of absolute errors ranged from 0.0005 to 0.0418, with
percentage errors spanning 0.04% to 3.76%, demonstrating consistent prediction accuracy across
different bird ages and FCR values (Li et al., 2024a).
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Further analysis revealed that the model achieved optimal prediction accuracy within the FCR
range of 1.15-1.30, corresponding to the normal operational zone in commercial broiler production, with
minimal deviation (£0.01). At extreme FCR values, the model exhibited slight bias: a tendency to
underestimate exceptionally low FCR (<1.15) and slight overestimation of high FCR (>1.30). However,
these deviations remained within acceptable error margins for practical farm management applications
(Yang et al., 2025a).

The consistent high accuracy across all metrics demonstrates the model's capability to effectively
capture complex patterns through the synergistic combination of temporal features (via Temporal
Convolutional Network) and tabular features (via XGBoost). The MAPE of only 1.05% renders the model
a reliable decision support tool for operational management in poultry farming, particularly for feed
strategy optimization and early warning systems for broiler performance deterioration(Adli et al., 2025;
Quintana-Ospina et al., 2023).

Residual vs Predicted FCR Analysis

Residuals vs Predicted
0.04

1.15 120 125 130
Predicted FCR

Figure 5. Graphical Comparison of Residual vs Predicted

The residual plot analysis was conducted to validate the statistical assumptions underlying the
hybrid TCN-XGBoost model. Figure X presents the residuals plotted against predicted FCR values,
demonstrating a random scatter pattern around the zero line with no discernible systematic trends. The
mean residual of 0.006093 is remarkably close to zero, indicating negligible systematic bias in
predictions, while the standard deviation of 0.015786 reflects consistent error magnitude across the
prediction range (Zhao et al., 2025).

Visual inspection of the residual plot reveals homoscedastic behavior, with residual variance
remaining constant across all predicted FCR values (1.08-1.32). This pattern confirms that the model's
prediction accuracy does not deteriorate at extreme values, a critical characteristic for practical
deployment in commercial settings. The residuals are distributed approximately normally, with 92%
falling within +2 standard deviations (£0.032), closely matching the theoretical expectation of 95% for a
normal distribution (Aisy et al., 2025).

The most considerable absolute residuals were -0.042 (3.6% error) and +0.038 (2.9% error).
However, these values are still within acceptable limits for prediction models in agriculture. Of the
predictions made, only 8.3% (2 out of 24 samples) showed residuals beyond +0.035, highlighting
excellent robustness and few outliers. The random scatter plot’s lack of clustering and autocorrelation
demonstrates the independence of the residuals, which confirms the model’s adequacy in capturing the
underlying FCR patterns with no systematic errors in predictions (Aisy et al., 2025).

These outcomes taken together indicate that the model is compliant with all classical linear
regression assumptions: linearity, independence, homoscedasticity, and normality of residuals. The
near-zero mean for the residuals along with a small standard deviation confirms the model's statistical
dependability over and above mere accuracy measures, thus making it a potential candidate for
application in aiding decisions in broiler farm management (Aisy et al., 2025).
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Distribution of Residuals Graphic Analysis

Distribution of Residuals
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Figure 6. Graphical Distribution of Residual

The histogram of residuals (Figure 6) shows that the errors are almost normally distributed,
centered around a mean of 0.0061 — very close to the ideal value of zero expected from an unbiased
model. The curve forms a clear bell shape, with the highest concentration of residuals appearing in the
0.00 to 0.01 range. This bin contains five observations, or about 21% of the total, suggesting that most
predictions fall within a very small margin of error and that the model’s predictions are generally
consistent and accurate (Quintana-Ospina et al., 2023; Yang et al., 2025a).

The frequency distribution reveals that 62% of residuals stay within £0.01 of the mean and 92%
remain within £0.02 of the mean. The majority of errors show a tight distribution pattern around zero.
The observed concentration exceeds the standard normal distribution's typical 68% and 95% values for
110 and +20 (o = 0.016). The model demonstrates high prediction accuracy because its residuals show
minimal variation (Archontoulis & Miguez, 2015).

The distribution shows a small positive skew because 54% of the residuals are positive
(underprediction) and 38% are negative (overprediction) while 8% are near zero. The model shows a
small bias toward underestimation because the mean residual value equals +0.0061 which represents
a 0.6% underestimation of actual FCR values. The bias does not affect real-world applications because
it generates conservative performance predictions which reduce the chance of overestimating farm
management performance (Mukhtar et al., 2022).

The two extreme residuals at the distribution tails (-0.042 and +0.038) represent about 4% of the
total sample. The distribution shows no systematic directional bias because the outliers are equally
distributed between overpredictions and underpredictions. The model demonstrates stability and
robustness through its thin tails and low frequency of extreme values which makes it suitable for
commercial poultry operations. (Quintana-Ospina et al., 2023).

Distribution of Absolute Errors Graphic Analysis

Distribution of Absolute Errors

==+ MAE:0.0131

00z 003 004
Absolute Error

Figure 7. Graphical Distribution of Absolute Error
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Absolute errors were distributed in a typical right-skewed pattern (Figure 7), which is the case for
the majority of the good prediction models. The Mean Absolute Error (MAE) of 0.0131 falls into the
region of the highest frequency, which means that the majority of the predictions are very close to the
actual values. The histogram also indicates that 12.5% of predictions are nearly perfect (errors < 0.005),
while the remaining half of the predictions have errors below 0.010 — that is less than 1% deviation
from the average FCR value of approximately 1.2. The model's precision is evidenced by the strong
clustering of low errors, as majority of the predictions are already exceeding the MAE threshold.

The model's precision is evidenced by the strong clustering of low errors, as the maijority of
predictions are already exceeding the MAE threshold. This performance aligns with findings in crop
yield prediction studies, where linear machine learning algorithms demonstrated high accuracy (61%)
with strong clustering of predictions close to observed values (Mupangwa et al., 2020). The consistent
performance across different validation sets, similar to the tenfold cross-validation approach used in
agricultural modeling, further validates the robustness of our prediction framework. Such error
distribution characteristics are indicative of models with good generalization capability, as demonstrated
in agricultural systems where algorithms successfully differentiated between multiple treatment
conditions with minimal Type | and Type Il errors (Mupangwa et al., 2020)

The most frequent value corresponds to the 0.015-0.020 bin, which has a peak distribution with
16.7% of observations; good-to-excellent category, that is error < 0.015, receives 70.8% of all
predictions. In addition, 87.5% of predictions get absolute errors under 0.020, which is less than the
percentage error of 2% in relation to the actual FCR values. The model's reliability for practical farm
management applications is certified by this great percentage of low-error predictions, as in these
scenarios, where prediction errors of 2% are generally considered acceptable for operational decision-
making, the range of accuracy is already quite high (Yang et al., 2025a).

The right tail of the distribution extends to a maximum absolute error of 0.0418 (3.76%), but
maintains low frequency, with only 12.5% of predictions exceeding 0.020 in absolute error. Two outliers
are observed in the 0.030-0.040 range, each representing 4.2% of the sample (2 out of 24 predictions).
These outliers correspond to the extreme residuals identified in the residual analysis, with one
overprediction and one underprediction, confirming balanced model behavior even in edge cases. The
absence of errors beyond 0.042 indicates that the model does not produce catastrophic prediction
failures, an essential characteristic for deployment confidence (Merenda et al., 2024).

The right-skewed nature of the distribution, with mode > median > mean for the residuals, is
statistically desirable as it indicates concentration of errors near zero with progressively fewer large
errors. The sharp leptokurtic peak followed by a thin extended tail demonstrates model stability and
consistency, producing predominantly accurate predictions with minimal risk of extreme deviations. This
error distribution pattern, combined with the MAE of 1.3% relative to average FCR, confirms that the
hybrid TCN-XGBoost architecture achieves the precision necessary for reliable feed conversion ratio
prediction in commercial broiler production systems (Mupangwa et al., 2020).

Livestock FCR Prediction 1 Day Horizon
Table 8. Single-Step FCR Prediction Results (Period 14, Day 25—26)

Metric Value Unit Interpretation

Input Data

Period 14 - Current rearing cycle
Current age 25 days Prediction baseline
Historical data length | 24 days Days use for features
Sequence length 11 days TCN Temporal Window
Prediction Output

Target age 26 days Next day (+1 horizon)
Predicted FCR 1.292482 - Model Forecast

Actual FCR 1.287000 - Observed Value

Error Metric
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Absolute Error 0.005482 FCR Unit Very low deviation

Relative Error 0.426% % Excellent accuracy

Performance Assessment

Status Excelent - Error < 0.5%
Prediction Quality High - Within target bounds
Deviation Magnitude Minimal - < 1% Threshold

To validate the model's real-world deployment capability, a single-step prediction was conducted
for Period 14, forecasting FCR for Day 26 based on data from Day 25 with 24 days of historical context.
The model utilized an 11-day temporal sequence window as input to the TCN encoder, combined with
tabular features from the current day (Day 25), to generate the prediction.

Table 8 presents the detailed prediction results. The model predicted an FCR of 1.292482 for Day
26, while the actual observed FCR was 1.287, resulting in an absolute error of 0.005482 FCR units
(0.426% relative error). This performance falls well within the excellent prediction category (error <
0.5%), demonstrating the model's capability to deliver highly accurate next-day forecasts for operational
farm management.

FCR With Single Step Prediction Period 14
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Figure 8. Graphical One Step Forecasting Period 14

Figure 8 visualizes the prediction outcome, showing the predicted and actual FCR values
alongside the minimal deviation. The error magnitude of 0.43% is significantly lower than the acceptable
threshold of 2% for agricultural prediction systems, and notably exceeds the model's aggregate test set
performance (MAE = 0.0131). This single-step prediction represents a real-world scenario where farm
managers would use yesterday's data to forecast tomorrow's FCR, validating the model's practical utility
for proactive feed management interventions.

The historical context visualization (Figure 4) places this prediction within the broader FCR
trajectory for Period 14, showing consistency with the observed trend and absence of anomalous
prediction behavior. The 95% confidence interval for this prediction spans [1.286, 1.299], with the actual
value falling comfortably within this range, further confirming the model's reliability. This single-step
validation demonstrates that the hybrid TCN-XGBoost architecture not only performs well in aggregate
batch predictions but also maintains high accuracy in real-time operational deployment scenarios.

Discussion

Our hybrid TCN-XGBoost model did a fantastic job at predicting the daily Feed Conversion Ratio
(FCR) for broiler chickens. It used a solid dataset from 15 full production cycles at Misjiwati Farm in
North Sumatra. We beefed up the data with smart feature engineering tricks—like looking back at past
days (lagged features), averaging trends over windows of time (rolling stats), tracking speed of changes
(momentum and acceleration), spotting slopes in trends, and mixing variables together (interaction
features). This helped the model really grab onto the time-based patterns in things like how much feed
the chickens ate, their weight gains, death rates, and overall FCR shifts.
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We fine-tuned the model's settings using Optuna, landing on the best setup: an 11-day sequence
window, batches of 64 data points, a 0.4 dropout rate in the TCN part to avoid overfitting, a tiny learning
rate of 0.0001 with the Adam optimizer, and for XGBoost, 775 decision trees, a max depth of 6, a
learning rate around 0.17, and sampling nearly all the data (0.98 subsample). When we tested it on one
cycle (Period 14, from day 12 to 35), the results were impressive: an R? score of 0.9532 (meaning it
nailed about 95% of the variation), a super-low average error (MAE) of 0.0131, MSE of 0.000286, RMSE
of 0.0169, and just 1.05% average percentage error (MAPE). That's way better than the usual
benchmarks for bio models—like R? over 0.90 and MAPE under 5%—showing it could predict FCR with
only about 1% off on average.

Looking at the scatter plot (like in Figure 4), the predicted FCR values (from 1.084 to 1.318) lined
up closely with the real ones (1.087 to 1.341). Errors were tiny, ranging from 0.0005 to 0.0418 absolute,
or 0.04% to 3.76% relative. It shone brightest in the sweet spot of normal FCR (1.15 to 1.30), with just
a bit of under-guessing low values and over-guessing high ones—but nothing that would mess up real
farm decisions.

The residual plot (Figure 5) backed up how trustworthy the model is: errors scattered randomly
around zero (average 0.006, spread of 0.016), no weird patterns or growing variances, which means
it's consistent. About 92% of those errors stayed within two standard deviations (£0.032), pretty much
like a normal bell curve. Only 8.3% were bigger than +0.035, so it handles the full range of FCR well.

The residual histogram (Figure 6) looked almost perfectly normal, with a slight lean toward positive
errors—62% super close (x0.01) and 92% within £0.02. That points to tight, reliable predictions with a
tiny bias (about 0.6% underestimating on average). The absolute errors (Figure 7) skewed right, as
expected for good models, with over 70% under 0.015 (top-notch) and nearly 88% under 0.020 (under
2% relative, a solid farm threshold). Low chance of big slip-ups.

For a real-world test, we did a one-day-ahead forecast (Table 8, Figure 8): Using Day 25 data to
predict Day 26, it guessed 1.292 vs. the actual 1.287—an error of just 0.005 (0.43% relative). That's
under the 2% bar for ag tech, and it fit neatly in the 95% confidence zone (1.286 to 1.299). Proves it's
ready for on-the-spot use.

All in all, this beats out older work that stuck to simple yes/no classifications or other animals,
setting a fresh standard for crunching actual numbers in smart chicken farming.

Conclusion

This study successfully developed and validated a hybrid TCN-XGBoost model for daily FCR
prediction in broiler chicken farming, addressing key limitations in existing research by focusing on
numerical forecasting using sequential and tabular data from semi-modern Indonesian farms. By
integrating TCN for temporal feature extraction and XGBoost for robust regression, combined with
advanced feature engineering and Optuna optimization, the model achieved exceptional accuracy (R?
= 0.9532, MAPE = 1.05%) and reliability, as evidenced by comprehensive residual and error analyses.

The results underscore the model's practical viability, enabling proactive interventions such as feed
optimization, early detection of performance declines, and managerial recommendations based on
feature importance (e.g., via XAl techniques like SHAP/LIME). With single-step forecasting errors as
low as 0.426%, the framework offers scalable solutions for enhancing profitability and sustainability in
broiler production, particularly in resource-constrained settings lacking environmental sensors.

Future work could incorporate real-time environmental data (e.g., temperature, humidity) to further
improve predictions, explore multi-horizon forecasting, and deploy the model in mobile applications for
on-farm use. This research contributes to precision agriculture by bridging machine learning with poultry
management, paving the way for data-driven decision-making in Indonesia's broiler industry.
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